File size: 11,428 Bytes
2b4b309 2723bd3 2b4b309 90e8636 e4b6cc5 6fc91c7 2b4b309 f04dfa8 9ac3da0 f04dfa8 fd936a6 f04dfa8 6fc91c7 0d28c87 fd936a6 9ac3da0 0d28c87 90e8636 6a4ac56 f04dfa8 6a4ac56 f04dfa8 e36d40b 2b4b309 8571d5a 2723bd3 f04dfa8 2723bd3 e1fdeee 2723bd3 2b4b309 6fc91c7 2b4b309 2723bd3 6a4ac56 2723bd3 2b4b309 6fc91c7 fd936a6 2723bd3 6a4ac56 2b4b309 0d28c87 2eb6d1a 5829740 0d28c87 8571d5a e36d40b f04dfa8 e36d40b 5829740 f04dfa8 5829740 e36d40b 6a4ac56 4d1c962 a13f86c 4d1c962 a13f86c 4d1c962 a13f86c 4d1c962 2b4b309 0c58a58 6a4ac56 2b4b309 8571d5a 4d1c962 2723bd3 f04dfa8 2723bd3 8571d5a b000e50 8571d5a 0d28c87 4d1c962 8571d5a 2b4b309 2eb6d1a 2723bd3 2b4b309 6fc91c7 40e000b a13f86c 2b4b309 8571d5a 2723bd3 e4b6cc5 2723bd3 2b4b309 90e8636 5fca25d f04dfa8 90e8636 e4b6cc5 fd936a6 318e969 fd936a6 ce95000 fd936a6 2723bd3 0d28c87 69a533b 9ac3da0 c7f7750 0d28c87 6a4ac56 0d28c87 6a4ac56 0d28c87 6a4ac56 0d28c87 8571d5a 90e8636 0d28c87 6a4ac56 0d28c87 40e000b 75f9ac3 6a4ac56 0d28c87 75f9ac3 0d28c87 5fca25d 75f9ac3 0d28c87 b000e50 0d28c87 6a4ac56 0d28c87 6a4ac56 0d28c87 ff3c0c2 fd936a6 0d28c87 6a4ac56 0d28c87 6a4ac56 0d28c87 6a4ac56 9d1a2d6 0d28c87 ed40758 f04dfa8 9d1a2d6 b000e50 f04dfa8 0d28c87 9d1a2d6 f04dfa8 9d1a2d6 b000e50 9d1a2d6 b000e50 9d1a2d6 0d28c87 ff3c0c2 0d28c87 6a4ac56 9d1a2d6 9b4773a 0d28c87 9d1a2d6 f04dfa8 9d1a2d6 b000e50 fd936a6 b000e50 0d28c87 fd936a6 ff3c0c2 0d28c87 ce95000 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import multiprocessing
import time
import gradio as gr
import pandas as pd
from distilabel.distiset import Distiset
from src.distilabel_dataset_generator.pipelines.sft import (
DEFAULT_DATASET,
DEFAULT_DATASET_DESCRIPTIONS,
DEFAULT_SYSTEM_PROMPT,
PROMPT_CREATION_PROMPT,
generate_pipeline_code,
get_pipeline,
get_prompt_generation_step,
)
from src.distilabel_dataset_generator.utils import (
get_login_button,
get_org_dropdown,
get_token,
swap_visibilty,
)
def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, is_sample):
pipeline = get_pipeline(
num_turns,
num_rows,
system_prompt,
is_sample
)
distiset: Distiset = pipeline.run(use_cache=False)
result_queue.put(distiset)
def generate_system_prompt(dataset_description, progress=gr.Progress()):
progress(0.1, desc="Initializing text generation")
generate_description = get_prompt_generation_step()
progress(0.4, desc="Loading model")
generate_description.load()
progress(0.7, desc="Generating system prompt")
result = next(
generate_description.process(
[
{
"system_prompt": PROMPT_CREATION_PROMPT,
"instruction": dataset_description,
}
]
)
)[0]["generation"]
progress(1.0, desc="System prompt generated")
return result
def generate_sample_dataset(system_prompt, progress=gr.Progress()):
progress(0.1, desc="Initializing sample dataset generation")
result = generate_dataset(system_prompt, num_turns=1, num_rows=1, progress=progress, is_sample=True)
progress(1.0, desc="Sample dataset generated")
return result
def generate_dataset(
system_prompt: str,
num_turns: int = 1,
num_rows: int = 5,
private: bool = True,
org_name: str = None,
repo_name: str = None,
oauth_token: str = None,
progress=gr.Progress(),
is_sample: bool = False,
):
repo_id = (
f"{org_name}/{repo_name}"
if repo_name is not None and org_name is not None
else None
)
if repo_id is not None:
if not all([repo_id, org_name, repo_name]):
raise gr.Error(
"Please provide a repo_name and org_name to push the dataset to."
)
if num_turns > 4:
num_turns = 4
gr.Info("You can only generate a dataset with 4 or fewer turns. Setting to 4.")
if num_rows > 5000:
num_rows = 1000
gr.Info(
"You can only generate a dataset with 1000 or fewer rows. Setting to 1000."
)
if num_rows < 5:
duration = 25
elif num_rows < 10:
duration = 60
elif num_rows < 30:
duration = 120
elif num_rows < 100:
duration = 240
elif num_rows < 300:
duration = 600
elif num_rows < 1000:
duration = 1200
else:
duration = 2400
result_queue = multiprocessing.Queue()
p = multiprocessing.Process(
target=_run_pipeline,
args=(result_queue, num_turns, num_rows, system_prompt, is_sample),
)
try:
p.start()
total_steps = 100
for step in range(total_steps):
if not p.is_alive() or p._popen.poll() is not None:
break
progress(
(step + 1) / total_steps,
desc=f"Generating dataset with {num_rows} rows. Don't close this window.",
)
time.sleep(duration / total_steps) # Adjust this value based on your needs
p.join()
except Exception as e:
raise gr.Error(f"An error occurred during dataset generation: {str(e)}")
distiset = result_queue.get()
if repo_id is not None:
progress(0.95, desc="Pushing dataset to Hugging Face Hub.")
distiset.push_to_hub(
repo_id=repo_id,
private=private,
include_script=False,
token=oauth_token,
)
# If not pushing to hub generate the dataset directly
distiset = distiset["default"]["train"]
if num_turns == 1:
outputs = distiset.to_pandas()[["prompt", "completion"]]
else:
outputs = distiset.to_pandas()[["messages"]]
progress(1.0, desc="Dataset generation completed")
return pd.DataFrame(outputs)
css = """
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
"""
with gr.Blocks(
title="⚗️ Distilabel Dataset Generator",
head="⚗️ Distilabel Dataset Generator",
css=css,
) as app:
with gr.Row():
gr.Markdown(
"To push the dataset to the Hugging Face Hub you need to sign in. This will only be used for pushing the dataset not for data generation."
)
with gr.Row():
gr.Column(scale=0.5)
get_login_button()
gr.Column(scale=0.5)
gr.Markdown("## Iterate on a sample dataset")
with gr.Column() as main_ui:
dataset_description = gr.TextArea(
label="Give a precise description of the assistant or tool. Don't describe the dataset",
value=DEFAULT_DATASET_DESCRIPTIONS[0],
)
examples = gr.Examples(
elem_id="system_prompt_examples",
examples=[[example] for example in DEFAULT_DATASET_DESCRIPTIONS[1:]],
inputs=[dataset_description],
)
with gr.Row():
gr.Column(scale=1)
btn_generate_system_prompt = gr.Button(value="Generate sample")
gr.Column(scale=1)
system_prompt = gr.TextArea(
label="System prompt for dataset generation. You can tune it and regenerate the sample",
value=DEFAULT_SYSTEM_PROMPT,
)
with gr.Row():
table = gr.DataFrame(
value=DEFAULT_DATASET,
label="Sample dataset. Prompts and completions truncated to 256 tokens.",
interactive=False,
wrap=True,
)
with gr.Row():
gr.Column(scale=1)
btn_generate_sample_dataset = gr.Button(
value="Regenerate sample",
)
gr.Column(scale=1)
result = btn_generate_system_prompt.click(
fn=generate_system_prompt,
inputs=[dataset_description],
outputs=[system_prompt],
show_progress=True,
).then(
fn=generate_sample_dataset,
inputs=[system_prompt],
outputs=[table],
show_progress=True,
)
btn_generate_sample_dataset.click(
fn=generate_sample_dataset,
inputs=[system_prompt],
outputs=[table],
show_progress=True,
)
# Add a header for the full dataset generation section
gr.Markdown("## Generate full dataset")
gr.Markdown(
"Once you're satisfied with the sample, generate a larger dataset and push it to the Hub."
)
with gr.Column() as push_to_hub_ui:
with gr.Row(variant="panel"):
num_turns = gr.Number(
value=1,
label="Number of turns in the conversation",
minimum=1,
maximum=4,
step=1,
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).",
)
num_rows = gr.Number(
value=10,
label="Number of rows in the dataset",
minimum=1,
maximum=500,
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
)
with gr.Row(variant="panel"):
oauth_token = gr.Textbox(
value=get_token(),
label="Hugging Face Token",
placeholder="hf_...",
type="password",
visible=False,
)
org_name = get_org_dropdown()
repo_name = gr.Textbox(label="Repo name", placeholder="dataset_name", value="my-distiset")
private = gr.Checkbox(
label="Private dataset", value=True, interactive=True, scale=0.5
)
with gr.Row() as regenerate_row:
gr.Column(scale=1)
btn_generate_full_dataset = gr.Button(
value="Generate Full Dataset", variant="primary"
)
gr.Column(scale=1)
success_message = gr.Markdown(visible=False)
with gr.Row():
final_dataset = gr.DataFrame(
value=DEFAULT_DATASET,
label="Generated dataset",
interactive=False,
wrap=True,
)
def show_success_message(org_name, repo_name):
return gr.Markdown(
value=f"""
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
<p style="margin-top: 0.5em;">
The generated dataset is in the right format for Fine-tuning with TRL, AutoTrain or other frameworks.
Your dataset is now available at:
<a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;">
https://huggingface.co/datasets/{org_name}/{repo_name}
</a>
</p>
</div>
""",
visible=True,
)
def hide_success_message():
return gr.Markdown(visible=False)
btn_generate_full_dataset.click(
fn=hide_success_message,
outputs=[success_message],
).then(
fn=generate_dataset,
inputs=[
system_prompt,
num_turns,
num_rows,
private,
org_name,
repo_name,
oauth_token,
],
outputs=[final_dataset],
show_progress=True,
).success(
fn=show_success_message,
inputs=[org_name, repo_name],
outputs=[success_message],
)
gr.Markdown("## Or run this pipeline locally with distilabel")
with gr.Accordion("Run this pipeline on Distilabel", open=False):
pipeline_code = gr.Code(
value=generate_pipeline_code(
system_prompt.value, num_turns.value, num_rows.value
),
language="python",
label="Distilabel Pipeline Code",
)
system_prompt.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
num_turns.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
num_rows.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
app.load(get_token, outputs=[oauth_token])
app.load(get_org_dropdown, outputs=[org_name])
app.load(fn=swap_visibilty, outputs=main_ui)
|