File size: 11,943 Bytes
2b8f4a6 f04dfa8 9ac3da0 f04dfa8 fd936a6 f04dfa8 fd936a6 f04dfa8 fd936a6 f04dfa8 fd936a6 c973277 3e29cb8 a726c8a c973277 bc52f37 c973277 0b6ba72 cb13241 aefe980 f16cf7d c973277 f04dfa8 2b8f4a6 f04dfa8 a13f86c f04dfa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import os
import pandas as pd
from distilabel.llms import InferenceEndpointsLLM
from distilabel.pipeline import Pipeline
from distilabel.steps import KeepColumns
from distilabel.steps.tasks import MagpieGenerator, TextGeneration
INFORMATION_SEEKING_PROMPT = (
"You are an AI assistant designed to provide accurate and concise information on a wide"
" range of topics. Your purpose is to assist users in finding specific facts,"
" explanations, or details about various subjects. Provide clear, factual responses and,"
" when appropriate, offer additional context or related information that might be useful"
" to the user."
)
REASONING_PROMPT = (
"You are an AI assistant specialized in logical thinking and problem-solving. Your"
" purpose is to help users work through complex ideas, analyze situations, and draw"
" conclusions based on given information. Approach each query with structured thinking,"
" break down problems into manageable parts, and guide users through the reasoning"
" process step-by-step."
)
PLANNING_PROMPT = (
"You are an AI assistant focused on helping users create effective plans and strategies."
" Your purpose is to assist in organizing thoughts, setting goals, and developing"
" actionable steps for various projects or activities. Offer structured approaches,"
" consider potential challenges, and provide tips for efficient execution of plans."
)
EDITING_PROMPT = (
"You are an AI assistant specialized in editing and improving written content. Your"
" purpose is to help users refine their writing by offering suggestions for grammar,"
" style, clarity, and overall structure. Provide constructive feedback, explain your"
" edits, and offer alternative phrasings when appropriate."
)
CODING_DEBUGGING_PROMPT = (
"You are an AI assistant designed to help with programming tasks. Your purpose is to"
" assist users in writing, reviewing, and debugging code across various programming"
" languages. Provide clear explanations, offer best practices, and help troubleshoot"
" issues. When appropriate, suggest optimizations or alternative approaches to coding"
" problems."
)
MATH_SYSTEM_PROMPT = (
"You are an AI assistant designed to provide helpful, step-by-step guidance on solving"
" math problems. The user will ask you a wide range of complex mathematical questions."
" Your purpose is to assist users in understanding mathematical concepts, working through"
" equations, and arriving at the correct solutions."
)
ROLE_PLAYING_PROMPT = (
"You are an AI assistant capable of engaging in various role-playing scenarios. Your"
" purpose is to adopt different personas or characters as requested by the user. Maintain"
" consistency with the chosen role, respond in character, and help create immersive and"
" interactive experiences for the user."
)
DATA_ANALYSIS_PROMPT = (
"You are an AI assistant specialized in data analysis and interpretation. Your purpose is"
" to help users understand and derive insights from data sets, statistics, and analytical"
" tasks. Offer clear explanations of data trends, assist with statistical calculations,"
" and provide guidance on data visualization and interpretation techniques."
)
CREATIVE_WRITING_PROMPT = (
"You are an AI assistant designed to support creative writing endeavors. Your purpose is"
" to help users craft engaging stories, poems, and other creative texts. Offer"
" suggestions for plot development, character creation, dialogue writing, and other"
" aspects of creative composition. Provide constructive feedback and inspire creativity."
)
ADVICE_SEEKING_PROMPT = (
"You are an AI assistant focused on providing thoughtful advice and guidance. Your"
" purpose is to help users navigate various personal or professional issues by offering"
" balanced perspectives, considering potential outcomes, and suggesting practical"
" solutions. Encourage users to think critically about their situations while providing"
" supportive and constructive advice."
)
BRAINSTORMING_PROMPT = (
"You are an AI assistant specialized in generating ideas and facilitating creative"
" thinking. Your purpose is to help users explore possibilities, think outside the box,"
" and develop innovative concepts. Encourage free-flowing thoughts, offer diverse"
" perspectives, and help users build upon and refine their ideas."
)
PROMPT_CREATION_PROMPT = f"""You are an AI assistant specialized in generating very precise prompts for dataset creation.
Your task is to write a prompt following the instruction of the user. Respond with the prompt and nothing else.
The prompt you write should follow the same style and structure as the following example prompts:
{INFORMATION_SEEKING_PROMPT}
{REASONING_PROMPT}
{PLANNING_PROMPT}
{CODING_DEBUGGING_PROMPT}
{EDITING_PROMPT}
{ROLE_PLAYING_PROMPT}
{DATA_ANALYSIS_PROMPT}
{CREATIVE_WRITING_PROMPT}
{ADVICE_SEEKING_PROMPT}
{BRAINSTORMING_PROMPT}
User dataset description:
"""
MODEL = "meta-llama/Meta-Llama-3.1-70B-Instruct"
DEFAULT_DATASET_DESCRIPTIONS = (
"A chemistry dataset for an assistant that explains chemical reactions and formulas.",
"A dataset for an assistant that work in the customer support domain.",
"A dataset for an assistant that writes code.",
"A dataset for an assistant that work in the legal domain.",
)
DEFAULT_SYSTEM_PROMPT = "You are an AI assistant specializing in chemistry and chemical reactions. Your purpose is to help users understand and work with chemical formulas, equations, and reactions. Provide clear explanations of reaction mechanisms, assist in balancing chemical equations, and offer guidance on the interpretation of chemical structures. Explain the roles of reactants, products, catalysts, and solvents, and define key chemistry terms when necessary."
DEFAULT_DATASET = pd.DataFrame(
{
"instruction": [
"What is the term for the study of the structure and evolution of the Earth's interior. "
],
"response": [
"""The study of the structure and evolution of the Earth's interior is called geophysics, particularly the subfield of geology known as geodynamics, and more specifically the subfield of geology known as geotectonics. However, a more specific term for this study is "geology of the Earth's interior" or "Earth internal structure." However, the most commonly used term for this study is geophysics. """
],
}
)
_STOP_SEQUENCES = [
"<|eot_id|>",
"<|start_header_id|>",
"assistant",
" \n\n",
]
def _get_output_mappings(num_turns):
if num_turns == 1:
return {"instruction": "prompt", "response": "completion"}
else:
return {"conversation": "messages"}
def generate_pipeline_code(system_prompt, num_turns, num_rows):
input_mappings = _get_output_mappings(num_turns)
code = f"""
from distilabel.pipeline import Pipeline
from distilabel.steps import KeepColumns
from distilabel.steps.tasks import MagpieGenerator
from distilabel.llms import InferenceEndpointsLLM
MODEL = "{MODEL}"
SYSTEM_PROMPT = "{system_prompt}"
with Pipeline(name="sft") as pipeline:
magpie = MagpieGenerator(
llm=InferenceEndpointsLLM(
model_id=MODEL,
tokenizer_id=MODEL,
magpie_pre_query_template="llama3",
generation_kwargs={{
"temperature": 0.8,
"do_sample": True,
"max_new_tokens": 2048,
"stop_sequences": {_STOP_SEQUENCES}
}}
),
n_turns={num_turns},
num_rows={num_rows},
system_prompt=SYSTEM_PROMPT,
output_mappings={input_mappings},
)
keep_columns = KeepColumns(
columns={list(input_mappings.values())} + ["model_name"],
)
magpie.connect(keep_columns)
if __name__ == "__main__":
distiset = pipeline.run()
"""
return code
def get_pipeline(num_turns, num_rows, system_prompt):
input_mappings = _get_output_mappings(num_turns)
output_mappings = input_mappings
if num_turns == 1:
with Pipeline(name="sft") as pipeline:
magpie = MagpieGenerator(
llm=InferenceEndpointsLLM(
model_id=MODEL,
tokenizer_id=MODEL,
api_key=os.environ["HF_TOKEN"],
magpie_pre_query_template="llama3",
generation_kwargs={
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
"do_sample": True,
"max_new_tokens": 512,
"stop_sequences": _STOP_SEQUENCES,
},
),
batch_size=2,
n_turns=num_turns,
num_rows=num_rows,
system_prompt=system_prompt,
output_mappings={"instruction": "prompt"},
only_instruction=True
)
generate_response = TextGeneration(
llm=InferenceEndpointsLLM(
model_id=MODEL,
tokenizer_id=MODEL,
api_key=os.environ["HF_TOKEN"],
generation_kwargs={
"temperature": 0.8,
"max_new_tokens": 1024
},
),
system_prompt=system_prompt,
output_mappings={"generation": "completion"},
input_mappings={"instruction": "prompt"}
)
keep_columns = KeepColumns(
columns=list(output_mappings.values()) + ["model_name"],
)
magpie.connect(generate_response)
generate_response.connect(keep_columns)
return pipeline
else:
with Pipeline(name="sft") as pipeline:
magpie = MagpieGenerator(
llm=InferenceEndpointsLLM(
model_id=MODEL,
tokenizer_id=MODEL,
api_key=os.environ["HF_TOKEN"],
magpie_pre_query_template="llama3",
generation_kwargs={
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
"do_sample": True,
"max_new_tokens": 2048,
"stop_sequences": _STOP_SEQUENCES,
},
),
batch_size=2,
n_turns=num_turns,
num_rows=num_rows,
system_prompt=system_prompt,
output_mappings=output_mappings,
)
keep_columns = KeepColumns(
columns=list(output_mappings.values()) + ["model_name"],
)
magpie.connect(keep_columns)
return pipeline
def get_prompt_generation_step():
generate_description = TextGeneration(
llm=InferenceEndpointsLLM(
api_key=os.environ["HF_TOKEN"],
model_id=MODEL,
tokenizer_id=MODEL,
generation_kwargs={
"temperature": 0.8,
"max_new_tokens": 2048,
"do_sample": True,
},
),
use_system_prompt=True,
)
return generate_description
if __name__ == "__main__":
prompt_generation_step = get_prompt_generation_step()
prompt_generation_step.load()
result = next(
prompt_generation_step.process(
[
{
"system_prompt": PROMPT_CREATION_PROMPT,
"instruction": DEFAULT_DATASET_DESCRIPTIONS[0],
}
]
)
)[0]["generation"]
pipeline = get_pipeline(num_rows=100, num_turns=1, system_prompt=result)
pipeline.run()
|