File size: 20,066 Bytes
e121b3f
 
 
 
 
 
08b43db
e121b3f
 
08b43db
e121b3f
08b43db
e121b3f
 
 
 
 
 
d75924a
e121b3f
d75924a
e121b3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a09e67c
 
 
 
 
 
 
 
e121b3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a45614
e121b3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b64ead
e121b3f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Fine-tune ModernBERT for text classification using synthetic data\n",
    "\n",
    "LLMs are great general purpose models, but they are not always the best choice for a specific task. Therefore, smaller and more specialized models are important for sustainable, efficient, and cheaper AI.\n",
    "A lack of domain sepcific datasets is a common problem for smaller and more specialized models. This is because it is difficult to find a dataset that is both representative and diverse enough for a specific task. We solve this problem by generating a synthetic dataset from an LLM using the `synthetic-data-generator`, which is available as a [Hugging Face Space](https://huggingface.co/spaces/argilla/synthetic-data-generator) or on [GitHub](https://github.com/argilla-io/synthetic-data-generator).\n",
    "\n",
    "In this example, we will fine-tune a ModernBERT model on a synthetic dataset generated from the synthetic-data-generator. This demonstrates the effectiveness of synthetic data and the novel ModernBERT model, which is a new and improved version of BERT models, with an 8192 token context length, significantly better downstream performance, and much faster processing speeds.\n",
    "\n",
    "## Install the dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Install Pytorch & other libraries\n",
    "%pip install \"torch==2.5.0\" \"torchvision==0.20.0\" \n",
    "%pip install \"setuptools<71.0.0\" scikit-learn \n",
    " \n",
    "# Install Hugging Face libraries\n",
    "%pip install  --upgrade \\\n",
    "  \"datasets==3.1.0\" \\\n",
    "  \"accelerate==1.2.1\" \\\n",
    "  \"hf-transfer==0.1.8\"\n",
    " \n",
    "# ModernBERT is not yet available in an official release, so we need to install it from github\n",
    "%pip install \"git+https://github.com/huggingface/transformers.git@6e0515e99c39444caae39472ee1b2fd76ece32f1\" --upgrade"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## The problem\n",
    "\n",
    "The [nvidia/domain-classifier](https://huggingface.co/nvidia/domain-classifier), is a model that can classify the domain of a text which can help with curating data. This model is cool but is based on the Deberta V3 Base, which is an outdated architecture that requires custom code to run, has a context length of 512 tokens, and is not as fast as the ModernBERT model. The labels for the model are:\n",
    "\n",
    "```\n",
    "'Adult', 'Arts_and_Entertainment', 'Autos_and_Vehicles', 'Beauty_and_Fitness', 'Books_and_Literature', 'Business_and_Industrial', 'Computers_and_Electronics', 'Finance', 'Food_and_Drink', 'Games', 'Health', 'Hobbies_and_Leisure', 'Home_and_Garden', 'Internet_and_Telecom', 'Jobs_and_Education', 'Law_and_Government', 'News', 'Online_Communities', 'People_and_Society', 'Pets_and_Animals', 'Real_Estate', 'Science', 'Sensitive_Subjects', 'Shopping', 'Sports', 'Travel_and_Transportation'\n",
    "```\n",
    "\n",
    "The data on which the model was trained is not available, so we cannot use it for our purposes. We can however generate a synthetic data to solve this problem."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "vscode": {
     "languageId": "plaintext"
    }
   },
   "source": [
    "## Let's generate some data\n",
    "\n",
    "Let's go to the [hosted Hugging Face Space](https://huggingface.co/spaces/argilla/synthetic-data-generator) to generate the data. This is done in three steps 1) we come up with a dataset description, 2) iterate on the task configuration, and 3) generate and push the data to Hugging Face. A more detailed flow can be found in [this blogpost](https://huggingface.co/blog/synthetic-data-generator). \n",
    "\n",
    "<iframe\n",
    "\tsrc=\"https://argilla-synthetic-data-generator.hf.space\"\n",
    "\tframeborder=\"0\"\n",
    "\twidth=\"850\"\n",
    "\theight=\"450\"\n",
    "></iframe>\n",
    "\n",
    "For this example, we will generate 1000 examples with a temperature of 1. After some iteration, we come up with the following system prompt:\n",
    "\n",
    "```\n",
    "Long texts (at least 2000 words) from various media sources like Wikipedia, Reddit, Common Crawl, websites, commercials, online forums, books, newspapers and folders that cover multiple topics. Classify the text based on its main subject matter into one of the following categories\n",
    "```\n",
    "\n",
    "We press the \"Push to Hub\" button and wait for the data to be generated. This takes a few minutes and we end up with a dataset with 1000 examples. The labels are nicely distributed across the categories, varied in length, and the texts look diverse and interesting.\n",
    "\n",
    "<iframe\n",
    "  src=\"https://huggingface.co/datasets/argilla/synthetic-domain-text-classification/embed/viewer/default/train\"\n",
    "  frameborder=\"0\"\n",
    "  width=\"100%\"\n",
    "  height=\"560px\"\n",
    "></iframe>\n",
    "\n",
    "The data is pushed to Argilla to so we recommend inspecting and validating the labels before finetuning the model."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Finetuning the ModernBERT model\n",
    "\n",
    "We mostly rely on the blog from [Phillip Schmid](https://www.philschmid.de/fine-tune-modern-bert-in-2025). I will basic consumer hardware, my Apple M1 Max with 32GB of shared memory. We will use the `datasets` library to load the data and the `transformers` library to finetune the model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/davidberenstein/Documents/programming/argilla/synthetic-data-generator/.venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "{'text': 'Recently, there has been an increase in property values within the suburban areas of several cities due to improvements in infrastructure and lifestyle amenities such as parks, retail stores, and educational institutions nearby. Additionally, new housing developments are emerging, catering to different family needs with varying sizes and price ranges. These changes have influenced investment decisions for many looking to buy or sell properties.',\n",
       " 'label': 14}"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "from datasets.arrow_dataset import Dataset\n",
    "from datasets.dataset_dict import DatasetDict, IterableDatasetDict\n",
    "from datasets.iterable_dataset import IterableDataset\n",
    " \n",
    "# Dataset id from huggingface.co/dataset\n",
    "dataset_id = \"argilla/synthetic-domain-text-classification\"\n",
    " \n",
    "# Load raw dataset\n",
    "train_dataset = load_dataset(dataset_id, split='train')\n",
    "\n",
    "split_dataset = train_dataset.train_test_split(test_size=0.1)\n",
    "split_dataset['train'][0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "First, we need to tokenize the data. We will use the `AutoTokenizer` class from the `transformers` library to load the tokenizer."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 900/900 [00:00<00:00, 4787.61 examples/s]\n",
      "Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 100/100 [00:00<00:00, 4163.70 examples/s]\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "dict_keys(['labels', 'input_ids', 'attention_mask'])"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from transformers import AutoTokenizer\n",
    " \n",
    "# Model id to load the tokenizer\n",
    "model_id = \"answerdotai/ModernBERT-base\"\n",
    "\n",
    "# Load Tokenizer\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
    " \n",
    "# Tokenize helper function\n",
    "def tokenize(batch):\n",
    "    return tokenizer(batch['text'], padding=True, truncation=True, return_tensors=\"pt\")\n",
    " \n",
    "# Tokenize dataset\n",
    "if \"label\" in split_dataset[\"train\"].features.keys():\n",
    "    split_dataset =  split_dataset.rename_column(\"label\", \"labels\") # to match Trainer\n",
    "tokenized_dataset = split_dataset.map(tokenize, batched=True, remove_columns=[\"text\"])\n",
    " \n",
    "tokenized_dataset[\"train\"].features.keys()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, we need to prepare the model. We will use the `AutoModelForSequenceClassification` class from the `transformers` library to load the model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of ModernBertForSequenceClassification were not initialized from the model checkpoint at answerdotai/ModernBERT-base and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
     ]
    }
   ],
   "source": [
    "from transformers import AutoModelForSequenceClassification\n",
    " \n",
    "# Model id to load the tokenizer\n",
    "model_id = \"answerdotai/ModernBERT-base\"\n",
    " \n",
    "# Prepare model labels - useful for inference\n",
    "labels = tokenized_dataset[\"train\"].features[\"labels\"].names\n",
    "num_labels = len(labels)\n",
    "label2id, id2label = dict(), dict()\n",
    "for i, label in enumerate(labels):\n",
    "    label2id[label] = str(i)\n",
    "    id2label[str(i)] = label\n",
    " \n",
    "# Download the model from huggingface.co/models\n",
    "model = AutoModelForSequenceClassification.from_pretrained(\n",
    "    model_id, num_labels=num_labels, label2id=label2id, id2label=id2label,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will use a simple F1 score as the evaluation metric."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from sklearn.metrics import f1_score\n",
    " \n",
    "# Metric helper method\n",
    "def compute_metrics(eval_pred):\n",
    "    predictions, labels = eval_pred\n",
    "    predictions = np.argmax(predictions, axis=1)\n",
    "    score = f1_score(\n",
    "            labels, predictions, labels=labels, pos_label=1, average=\"weighted\"\n",
    "        )\n",
    "    return {\"f1\": float(score) if score == 1 else score}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally, we need to define the training arguments. We will use the `TrainingArguments` class from the `transformers` library to define the training arguments."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/davidberenstein/Documents/programming/argilla/synthetic-data-generator/.venv/lib/python3.11/site-packages/transformers/training_args.py:2241: UserWarning: `use_mps_device` is deprecated and will be removed in version 5.0 of πŸ€— Transformers. `mps` device will be used by default if available similar to the way `cuda` device is used.Therefore, no action from user is required. \n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "from huggingface_hub import HfFolder\n",
    "from transformers import Trainer, TrainingArguments\n",
    " \n",
    "# Define training args\n",
    "training_args = TrainingArguments(\n",
    "    output_dir= \"ModernBERT-domain-classifier\",\n",
    "    per_device_train_batch_size=32,\n",
    "    per_device_eval_batch_size=16,\n",
    "    learning_rate=5e-5,\n",
    "\t\tnum_train_epochs=5,\n",
    "    bf16=True, # bfloat16 training \n",
    "    optim=\"adamw_torch_fused\", # improved optimizer \n",
    "    # logging & evaluation strategies\n",
    "    logging_strategy=\"steps\",\n",
    "    logging_steps=100,\n",
    "    eval_strategy=\"epoch\",\n",
    "    save_strategy=\"epoch\",\n",
    "    save_total_limit=2,\n",
    "    load_best_model_at_end=True,\n",
    "    use_mps_device=True,\n",
    "    metric_for_best_model=\"f1\",\n",
    "    # push to hub parameters\n",
    "    push_to_hub=True,\n",
    "    hub_strategy=\"every_save\",\n",
    "    hub_token=HfFolder.get_token(),\n",
    ")\n",
    " \n",
    "# Create a Trainer instance\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=tokenized_dataset[\"train\"],\n",
    "    eval_dataset=tokenized_dataset[\"test\"],\n",
    "    compute_metrics=compute_metrics,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "                                                 \n",
      " 20%|β–ˆβ–ˆ        | 29/145 [11:32<33:16, 17.21s/it]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'eval_loss': 0.729780912399292, 'eval_f1': 0.7743598318036522, 'eval_runtime': 3.5337, 'eval_samples_per_second': 28.299, 'eval_steps_per_second': 1.981, 'epoch': 1.0}\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "                                                  \n",
      " 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 58/145 [22:57<25:56, 17.89s/it]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'eval_loss': 0.4369044005870819, 'eval_f1': 0.8310764765820946, 'eval_runtime': 3.3266, 'eval_samples_per_second': 30.061, 'eval_steps_per_second': 2.104, 'epoch': 2.0}\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "                                                \n",
      " 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 87/145 [35:16<17:06, 17.70s/it]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'eval_loss': 0.6091340184211731, 'eval_f1': 0.8399274488570763, 'eval_runtime': 3.2772, 'eval_samples_per_second': 30.514, 'eval_steps_per_second': 2.136, 'epoch': 3.0}\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      " 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 100/145 [41:03<18:02, 24.06s/it]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.7663, 'grad_norm': 7.232136249542236, 'learning_rate': 1.5517241379310346e-05, 'epoch': 3.45}\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "                                                 \n",
      " 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 116/145 [47:23<08:50, 18.30s/it]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'eval_loss': 0.43516409397125244, 'eval_f1': 0.8797674004703547, 'eval_runtime': 3.2975, 'eval_samples_per_second': 30.326, 'eval_steps_per_second': 2.123, 'epoch': 4.0}\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "                                                   \n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 145/145 [1:00:40<00:00, 19.18s/it]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'eval_loss': 0.39272159337997437, 'eval_f1': 0.8914389523348718, 'eval_runtime': 3.5564, 'eval_samples_per_second': 28.118, 'eval_steps_per_second': 1.968, 'epoch': 5.0}\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 145/145 [1:00:42<00:00, 25.12s/it]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'train_runtime': 3642.7783, 'train_samples_per_second': 1.235, 'train_steps_per_second': 0.04, 'train_loss': 0.535627057634551, 'epoch': 5.0}\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "events.out.tfevents.1735555878.Davids-MacBook-Pro.local.23438.0: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 9.32k/9.32k [00:00<00:00, 55.0kB/s]\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "CommitInfo(commit_url='https://huggingface.co/davidberenstein1957/domain-classifier/commit/915f4b03c230cc8f376f13729728f14347400041', commit_message='End of training', commit_description='', oid='915f4b03c230cc8f376f13729728f14347400041', pr_url=None, repo_url=RepoUrl('https://huggingface.co/davidberenstein1957/domain-classifier', endpoint='https://huggingface.co', repo_type='model', repo_id='davidberenstein1957/domain-classifier'), pr_revision=None, pr_num=None)"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "trainer.train()\n",
    "# Save processor and create model card\n",
    "tokenizer.save_pretrained(\"ModernBERT-domain-classifier\")\n",
    "trainer.create_model_card()\n",
    "trainer.push_to_hub()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We get an F1 score of 0.89 on the test set, which is pretty good for the small dataset and time spent."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Run inference\n",
    "\n",
    "We can now load the model and run inference."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Device set to use mps:0\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[{'label': 'health', 'score': 0.6779336333274841}]"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from transformers import pipeline\n",
    " \n",
    "# load model from huggingface.co/models using our repository id\n",
    "classifier = pipeline(\n",
    "    task=\"text-classification\", \n",
    "    model=\"argilla/ModernBERT-domain-classifier\", \n",
    "    device=0,\n",
    ")\n",
    " \n",
    "sample = \"Smoking is bad for your health.\"\n",
    " \n",
    "classifier(sample)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Conclusion\n",
    "\n",
    "We have shown that we can generate a synthetic dataset from an LLM and finetune a ModernBERT model on it. This the effectiveness of synthetic data and the novel ModernBERT model, which is new and improved version of BERT models, with 8192 token context length, significantly better downstream performance, and much faster processing speeds. \n",
    "\n",
    "Pretty cool for 20 minutes of generating data, and an hour of fine-tuning on consumer hardware."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}