davidberenstein1957's picture
feat: add support for file uploads
a69bbb8
raw
history blame
12.6 kB
import io
import multiprocessing
import time
import gradio as gr
import pandas as pd
from distilabel.distiset import Distiset
from huggingface_hub import upload_file
from src.distilabel_dataset_generator.pipelines.sft import (
DEFAULT_DATASET_DESCRIPTIONS,
DEFAULT_DATASETS,
DEFAULT_SYSTEM_PROMPTS,
PROMPT_CREATION_PROMPT,
generate_pipeline_code,
get_pipeline,
get_prompt_generation_step,
)
from src.distilabel_dataset_generator.utils import (
get_login_button,
get_org_dropdown,
get_token,
swap_visibilty,
)
def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, is_sample):
pipeline = get_pipeline(num_turns, num_rows, system_prompt, is_sample)
distiset: Distiset = pipeline.run(use_cache=True)
result_queue.put(distiset)
def generate_system_prompt(dataset_description, progress=gr.Progress()):
if dataset_description in DEFAULT_DATASET_DESCRIPTIONS:
index = DEFAULT_DATASET_DESCRIPTIONS.index(dataset_description)
if index < len(DEFAULT_SYSTEM_PROMPTS):
return DEFAULT_SYSTEM_PROMPTS[index]
progress(0.1, desc="Initializing text generation")
generate_description = get_prompt_generation_step()
progress(0.4, desc="Loading model")
generate_description.load()
progress(0.7, desc="Generating system prompt")
result = next(
generate_description.process(
[
{
"system_prompt": PROMPT_CREATION_PROMPT,
"instruction": dataset_description,
}
]
)
)[0]["generation"]
progress(1.0, desc="System prompt generated")
return result
def generate_sample_dataset(system_prompt, progress=gr.Progress()):
if system_prompt in DEFAULT_SYSTEM_PROMPTS:
index = DEFAULT_SYSTEM_PROMPTS.index(system_prompt)
if index < len(DEFAULT_DATASETS):
return DEFAULT_DATASETS[index]
progress(0.1, desc="Initializing sample dataset generation")
result = generate_dataset(
system_prompt, num_turns=1, num_rows=1, progress=progress, is_sample=True
)
progress(1.0, desc="Sample dataset generated")
return result
def generate_dataset(
system_prompt: str,
num_turns: int = 1,
num_rows: int = 5,
private: bool = True,
org_name: str = None,
repo_name: str = None,
oauth_token: str = None,
progress=gr.Progress(),
is_sample: bool = False,
):
repo_id = (
f"{org_name}/{repo_name}"
if repo_name is not None and org_name is not None
else None
)
if repo_id is not None:
if not all([repo_id, org_name, repo_name]):
raise gr.Error(
"Please provide a `repo_name` and `org_name` to push the dataset to."
)
if num_turns > 4:
num_turns = 4
gr.Info("You can only generate a dataset with 4 or fewer turns. Setting to 4.")
if num_rows > 5000:
num_rows = 1000
gr.Info(
"You can only generate a dataset with 1000 or fewer rows. Setting to 1000."
)
if num_rows < 5:
duration = 25
elif num_rows < 10:
duration = 60
elif num_rows < 30:
duration = 120
elif num_rows < 100:
duration = 240
elif num_rows < 300:
duration = 600
elif num_rows < 1000:
duration = 1200
else:
duration = 2400
result_queue = multiprocessing.Queue()
p = multiprocessing.Process(
target=_run_pipeline,
args=(result_queue, num_turns, num_rows, system_prompt, is_sample),
)
try:
p.start()
total_steps = 100
for step in range(total_steps):
if not p.is_alive() or p._popen.poll() is not None:
break
progress(
(step + 1) / total_steps,
desc=f"Generating dataset with {num_rows} rows. Don't close this window.",
)
time.sleep(duration / total_steps) # Adjust this value based on your needs
p.join()
except Exception as e:
raise gr.Error(f"An error occurred during dataset generation: {str(e)}")
distiset = result_queue.get()
if repo_id is not None:
progress(0.95, desc="Pushing dataset to Hugging Face Hub.")
distiset.push_to_hub(
repo_id=repo_id,
private=private,
include_script=True,
token=oauth_token,
)
# If not pushing to hub generate the dataset directly
distiset = distiset["default"]["train"]
if num_turns == 1:
outputs = distiset.to_pandas()[["prompt", "completion"]]
else:
outputs = distiset.to_pandas()[["messages"]]
progress(1.0, desc="Dataset generation completed")
return pd.DataFrame(outputs)
def upload_pipeline_code(pipeline_code, org_name, repo_name, oauth_token):
with io.BytesIO(pipeline_code.encode("utf-8")) as f:
upload_file(
path_or_fileobj=f,
path_in_repo="pipeline.py",
repo_id=f"{org_name}/{repo_name}",
repo_type="dataset",
token=oauth_token,
commit_message="Include pipeline script",
)
css = """
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
"""
with gr.Blocks(
title="🧶 DataCraft",
head="🧶 DataCraft",
css=css,
) as app:
with gr.Row():
gr.Markdown(
"To push the dataset to the Hugging Face Hub you need to sign in. This will only be used for pushing the dataset not for data generation."
)
with gr.Row():
gr.Column()
get_login_button()
gr.Column()
gr.Markdown("## Iterate on a sample dataset")
with gr.Column() as main_ui:
dataset_description = gr.TextArea(
label="Give a precise description of the assistant or tool. Don't describe the dataset",
value=DEFAULT_DATASET_DESCRIPTIONS[0],
lines=2,
)
examples = gr.Examples(
elem_id="system_prompt_examples",
examples=[[example] for example in DEFAULT_DATASET_DESCRIPTIONS],
inputs=[dataset_description],
)
with gr.Row():
gr.Column(scale=1)
btn_generate_system_prompt = gr.Button(value="Generate sample")
gr.Column(scale=1)
system_prompt = gr.TextArea(
label="System prompt for dataset generation. You can tune it and regenerate the sample",
value=DEFAULT_SYSTEM_PROMPTS[0],
lines=5,
)
with gr.Row():
sample_dataset = gr.DataFrame(
value=DEFAULT_DATASETS[0],
label="Sample dataset. Prompts and completions truncated to 256 tokens.",
interactive=False,
wrap=True,
)
with gr.Row():
gr.Column(scale=1)
btn_generate_sample_dataset = gr.Button(
value="Regenerate sample",
)
gr.Column(scale=1)
result = btn_generate_system_prompt.click(
fn=generate_system_prompt,
inputs=[dataset_description],
outputs=[system_prompt],
show_progress=True,
).then(
fn=generate_sample_dataset,
inputs=[system_prompt],
outputs=[sample_dataset],
show_progress=True,
)
btn_generate_sample_dataset.click(
fn=generate_sample_dataset,
inputs=[system_prompt],
outputs=[sample_dataset],
show_progress=True,
)
# Add a header for the full dataset generation section
gr.Markdown("## Generate full dataset")
gr.Markdown(
"Once you're satisfied with the sample, generate a larger dataset and push it to the Hub."
)
with gr.Column() as push_to_hub_ui:
with gr.Row(variant="panel"):
num_turns = gr.Number(
value=1,
label="Number of turns in the conversation",
minimum=1,
maximum=4,
step=1,
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).",
)
num_rows = gr.Number(
value=10,
label="Number of rows in the dataset",
minimum=1,
maximum=500,
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
)
with gr.Row(variant="panel"):
oauth_token = gr.Textbox(
value=get_token(),
label="Hugging Face Token",
placeholder="hf_...",
type="password",
visible=False,
)
org_name = get_org_dropdown()
repo_name = gr.Textbox(
label="Repo name", placeholder="dataset_name", value="my-distiset"
)
private = gr.Checkbox(
label="Private dataset", value=True, interactive=True, scale=0.5
)
with gr.Row() as regenerate_row:
gr.Column(scale=1)
btn_generate_full_dataset = gr.Button(
value="Generate Full Dataset", variant="primary"
)
gr.Column(scale=1)
success_message = gr.Markdown(visible=False)
with gr.Row():
final_dataset = gr.DataFrame(
value=DEFAULT_DATASETS[0],
label="Generated dataset",
interactive=False,
wrap=True,
)
def show_success_message(org_name, repo_name):
return gr.Markdown(
value=f"""
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
<p style="margin-top: 0.5em;">
The generated dataset is in the right format for Fine-tuning with TRL, AutoTrain or other frameworks.
Your dataset is now available at:
<a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;">
https://huggingface.co/datasets/{org_name}/{repo_name}
</a>
</p>
</div>
""",
visible=True,
)
def hide_success_message():
return gr.Markdown(visible=False)
gr.Markdown("## Or run this pipeline locally with distilabel")
with gr.Accordion("Run this pipeline using distilabel", open=False):
pipeline_code = gr.Code(
value=generate_pipeline_code(
system_prompt.value, num_turns.value, num_rows.value
),
language="python",
label="Distilabel Pipeline Code",
)
sample_dataset.change(
fn=lambda x: x,
inputs=[sample_dataset],
outputs=[final_dataset],
)
btn_generate_full_dataset.click(
fn=hide_success_message,
outputs=[success_message],
).then(
fn=generate_dataset,
inputs=[
system_prompt,
num_turns,
num_rows,
private,
org_name,
repo_name,
oauth_token,
],
outputs=[final_dataset],
show_progress=True,
).then(
fn=upload_pipeline_code,
inputs=[pipeline_code, org_name, repo_name, oauth_token],
outputs=[],
).success(
fn=show_success_message,
inputs=[org_name, repo_name],
outputs=[success_message],
)
system_prompt.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
num_turns.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
num_rows.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
app.load(get_token, outputs=[oauth_token])
app.load(get_org_dropdown, outputs=[org_name])
app.load(fn=swap_visibilty, outputs=main_ui)