|
import io |
|
import uuid |
|
from typing import Any, Callable, List, Tuple, Union |
|
|
|
import argilla as rg |
|
import gradio as gr |
|
import pandas as pd |
|
from datasets import ClassLabel, Dataset, Features, Sequence, Value |
|
from distilabel.distiset import Distiset |
|
from gradio import OAuthToken |
|
from huggingface_hub import HfApi, upload_file |
|
|
|
from src.distilabel_dataset_generator.utils import ( |
|
_LOGGED_OUT_CSS, |
|
get_argilla_client, |
|
get_login_button, |
|
list_orgs, |
|
swap_visibilty, |
|
) |
|
|
|
TEXTCAT_TASK = "text_classification" |
|
SFT_TASK = "supervised_fine_tuning" |
|
|
|
|
|
def get_main_ui( |
|
default_dataset_descriptions: List[str], |
|
default_system_prompts: List[str], |
|
default_datasets: List[pd.DataFrame], |
|
fn_generate_system_prompt: Callable, |
|
fn_generate_dataset: Callable, |
|
task: str, |
|
): |
|
def fn_generate_sample_dataset(system_prompt, progress=gr.Progress()): |
|
if system_prompt in default_system_prompts: |
|
index = default_system_prompts.index(system_prompt) |
|
if index < len(default_datasets): |
|
return default_datasets[index] |
|
if task == TEXTCAT_TASK: |
|
result = fn_generate_dataset( |
|
system_prompt=system_prompt, |
|
difficulty="high school", |
|
clarity="clear", |
|
labels=[], |
|
num_labels=1, |
|
num_rows=1, |
|
progress=progress, |
|
is_sample=True, |
|
) |
|
else: |
|
result = fn_generate_dataset( |
|
system_prompt=system_prompt, |
|
num_turns=1, |
|
num_rows=1, |
|
progress=progress, |
|
is_sample=True, |
|
) |
|
return result |
|
|
|
with gr.Blocks( |
|
title="🧬 Synthetic Data Generator", |
|
head="🧬 Synthetic Data Generator", |
|
css=_LOGGED_OUT_CSS, |
|
) as app: |
|
with gr.Row(): |
|
gr.Markdown( |
|
"Want to run this locally or with other LLMs? Take a look at the FAQ tab. distilabel Synthetic Data Generator is free, we use the authentication token to push the dataset to the Hugging Face Hub and not for data generation." |
|
) |
|
with gr.Row(): |
|
gr.Column() |
|
get_login_button() |
|
gr.Column() |
|
|
|
gr.Markdown("## Iterate on a sample dataset") |
|
with gr.Column() as main_ui: |
|
( |
|
dataset_description, |
|
examples, |
|
btn_generate_system_prompt, |
|
system_prompt, |
|
sample_dataset, |
|
btn_generate_sample_dataset, |
|
) = get_iterate_on_sample_dataset_ui( |
|
default_dataset_descriptions=default_dataset_descriptions, |
|
default_system_prompts=default_system_prompts, |
|
default_datasets=default_datasets, |
|
task=task, |
|
) |
|
gr.Markdown("## Generate full dataset") |
|
gr.Markdown( |
|
"Once you're satisfied with the sample, generate a larger dataset and push it to Argilla or the Hugging Face Hub." |
|
) |
|
with gr.Row(variant="panel") as custom_input_ui: |
|
pass |
|
|
|
( |
|
dataset_name, |
|
add_to_existing_dataset, |
|
btn_generate_full_dataset_argilla, |
|
btn_generate_and_push_to_argilla, |
|
btn_push_to_argilla, |
|
org_name, |
|
repo_name, |
|
private, |
|
btn_generate_full_dataset, |
|
btn_generate_and_push_to_hub, |
|
btn_push_to_hub, |
|
final_dataset, |
|
success_message, |
|
) = get_push_to_ui(default_datasets) |
|
|
|
sample_dataset.change( |
|
fn=lambda x: x, |
|
inputs=[sample_dataset], |
|
outputs=[final_dataset], |
|
) |
|
|
|
btn_generate_system_prompt.click( |
|
fn=fn_generate_system_prompt, |
|
inputs=[dataset_description], |
|
outputs=[system_prompt], |
|
show_progress=True, |
|
).then( |
|
fn=fn_generate_sample_dataset, |
|
inputs=[system_prompt], |
|
outputs=[sample_dataset], |
|
show_progress=True, |
|
) |
|
|
|
btn_generate_sample_dataset.click( |
|
fn=fn_generate_sample_dataset, |
|
inputs=[system_prompt], |
|
outputs=[sample_dataset], |
|
show_progress=True, |
|
) |
|
|
|
app.load(fn=swap_visibilty, outputs=main_ui) |
|
app.load(get_org_dropdown, outputs=[org_name]) |
|
|
|
return ( |
|
app, |
|
main_ui, |
|
custom_input_ui, |
|
dataset_description, |
|
examples, |
|
btn_generate_system_prompt, |
|
system_prompt, |
|
sample_dataset, |
|
btn_generate_sample_dataset, |
|
dataset_name, |
|
add_to_existing_dataset, |
|
btn_generate_full_dataset_argilla, |
|
btn_generate_and_push_to_argilla, |
|
btn_push_to_argilla, |
|
org_name, |
|
repo_name, |
|
private, |
|
btn_generate_full_dataset, |
|
btn_generate_and_push_to_hub, |
|
btn_push_to_hub, |
|
final_dataset, |
|
success_message, |
|
) |
|
|
|
|
|
def validate_argilla_user_workspace_dataset( |
|
dataset_name: str, |
|
final_dataset: pd.DataFrame, |
|
add_to_existing_dataset: bool, |
|
oauth_token: Union[OAuthToken, None] = None, |
|
progress=gr.Progress(), |
|
) -> str: |
|
progress(0, desc="Validating dataset configuration") |
|
hf_user = HfApi().whoami(token=oauth_token.token)["name"] |
|
client = get_argilla_client() |
|
if dataset_name is None or dataset_name == "": |
|
raise gr.Error("Dataset name is required") |
|
|
|
rg_user = client.users(username=hf_user) |
|
if rg_user is None: |
|
rg_user = client.users.add( |
|
rg.User(username=hf_user, role="admin", password=str(uuid.uuid4())) |
|
) |
|
|
|
workspace = client.workspaces(name=hf_user) |
|
if workspace is None: |
|
workspace = client.workspaces.add(rg.Workspace(name=hf_user)) |
|
workspace.add_user(hf_user) |
|
|
|
dataset = client.datasets(name=dataset_name, workspace=hf_user) |
|
if dataset and not add_to_existing_dataset: |
|
raise gr.Error(f"Dataset {dataset_name} already exists") |
|
return final_dataset |
|
|
|
|
|
def get_org_dropdown(oauth_token: OAuthToken = None): |
|
orgs = list_orgs(oauth_token) |
|
return gr.Dropdown( |
|
label="Organization", |
|
choices=orgs, |
|
value=orgs[0] if orgs else None, |
|
allow_custom_value=True, |
|
) |
|
|
|
|
|
def get_push_to_ui(default_datasets): |
|
with gr.Column() as push_to_ui: |
|
( |
|
dataset_name, |
|
add_to_existing_dataset, |
|
btn_generate_full_dataset_argilla, |
|
btn_generate_and_push_to_argilla, |
|
btn_push_to_argilla, |
|
) = get_argilla_tab() |
|
( |
|
org_name, |
|
repo_name, |
|
private, |
|
btn_generate_full_dataset, |
|
btn_generate_and_push_to_hub, |
|
btn_push_to_hub, |
|
) = get_hf_tab() |
|
final_dataset = get_final_dataset_row(default_datasets) |
|
success_message = get_success_message_row() |
|
return ( |
|
dataset_name, |
|
add_to_existing_dataset, |
|
btn_generate_full_dataset_argilla, |
|
btn_generate_and_push_to_argilla, |
|
btn_push_to_argilla, |
|
org_name, |
|
repo_name, |
|
private, |
|
btn_generate_full_dataset, |
|
btn_generate_and_push_to_hub, |
|
btn_push_to_hub, |
|
final_dataset, |
|
success_message, |
|
) |
|
|
|
|
|
def get_iterate_on_sample_dataset_ui( |
|
default_dataset_descriptions: List[str], |
|
default_system_prompts: List[str], |
|
default_datasets: List[pd.DataFrame], |
|
task: str, |
|
): |
|
with gr.Column(): |
|
dataset_description = gr.TextArea( |
|
label="Give a precise description of your desired application. Check the examples for inspiration.", |
|
value=default_dataset_descriptions[0], |
|
lines=2, |
|
) |
|
examples = gr.Examples( |
|
elem_id="system_prompt_examples", |
|
examples=[[example] for example in default_dataset_descriptions], |
|
inputs=[dataset_description], |
|
) |
|
with gr.Row(): |
|
gr.Column(scale=1) |
|
btn_generate_system_prompt = gr.Button( |
|
value="Generate system prompt and sample dataset", variant="primary" |
|
) |
|
gr.Column(scale=1) |
|
|
|
system_prompt = gr.TextArea( |
|
label="System prompt for dataset generation. You can tune it and regenerate the sample.", |
|
value=default_system_prompts[0], |
|
lines=2 if task == TEXTCAT_TASK else 5, |
|
) |
|
|
|
with gr.Row(): |
|
sample_dataset = gr.Dataframe( |
|
value=default_datasets[0], |
|
label=( |
|
"Sample dataset. Text truncated to 256 tokens." |
|
if task == TEXTCAT_TASK |
|
else "Sample dataset. Prompts and completions truncated to 256 tokens." |
|
), |
|
interactive=False, |
|
wrap=True, |
|
) |
|
|
|
with gr.Row(): |
|
gr.Column(scale=1) |
|
btn_generate_sample_dataset = gr.Button( |
|
value="Generate sample dataset", variant="primary" |
|
) |
|
gr.Column(scale=1) |
|
|
|
return ( |
|
dataset_description, |
|
examples, |
|
btn_generate_system_prompt, |
|
system_prompt, |
|
sample_dataset, |
|
btn_generate_sample_dataset, |
|
) |
|
|
|
|
|
def get_pipeline_code_ui(pipeline_code: str) -> gr.Code: |
|
gr.Markdown("## Or run this pipeline locally with distilabel") |
|
gr.Markdown( |
|
"You can run this pipeline locally with distilabel. For more information, please refer to the [distilabel documentation](https://distilabel.argilla.io/) or go to the FAQ tab at the top of the page for more information." |
|
) |
|
with gr.Accordion( |
|
"Run this pipeline using distilabel", |
|
open=False, |
|
): |
|
pipeline_code = gr.Code( |
|
value=pipeline_code, |
|
language="python", |
|
label="Distilabel Pipeline Code", |
|
) |
|
return pipeline_code |
|
|
|
|
|
def get_argilla_tab() -> Tuple[Any]: |
|
with gr.Tab(label="Argilla"): |
|
if get_argilla_client() is not None: |
|
with gr.Row(variant="panel"): |
|
dataset_name = gr.Textbox( |
|
label="Dataset name", |
|
placeholder="dataset_name", |
|
value="my-distiset", |
|
) |
|
add_to_existing_dataset = gr.Checkbox( |
|
label="Allow adding records to existing dataset", |
|
info="When selected, you do need to ensure the dataset options are the same as in the existing dataset.", |
|
value=False, |
|
interactive=True, |
|
scale=1, |
|
) |
|
|
|
with gr.Row(variant="panel"): |
|
btn_generate_full_dataset_argilla = gr.Button( |
|
value="Generate", variant="primary", scale=2 |
|
) |
|
btn_generate_and_push_to_argilla = gr.Button( |
|
value="Generate and Push to Argilla", |
|
variant="primary", |
|
scale=2, |
|
) |
|
btn_push_to_argilla = gr.Button( |
|
value="Push to Argilla", variant="primary", scale=2 |
|
) |
|
else: |
|
gr.Markdown( |
|
"Please add `ARGILLA_API_URL` and `ARGILLA_API_KEY` to use Argilla or export the dataset to the Hugging Face Hub." |
|
) |
|
return ( |
|
dataset_name, |
|
add_to_existing_dataset, |
|
btn_generate_full_dataset_argilla, |
|
btn_generate_and_push_to_argilla, |
|
btn_push_to_argilla, |
|
) |
|
|
|
|
|
def get_hf_tab() -> Tuple[Any]: |
|
with gr.Tab("Hugging Face Hub"): |
|
with gr.Row(variant="panel"): |
|
org_name = get_org_dropdown() |
|
repo_name = gr.Textbox( |
|
label="Repo name", |
|
placeholder="dataset_name", |
|
value="my-distiset", |
|
) |
|
private = gr.Checkbox( |
|
label="Private dataset", |
|
value=True, |
|
interactive=True, |
|
scale=1, |
|
) |
|
with gr.Row(variant="panel"): |
|
btn_generate_full_dataset = gr.Button( |
|
value="Generate", variant="primary", scale=2 |
|
) |
|
btn_generate_and_push_to_hub = gr.Button( |
|
value="Generate and Push to Hub", variant="primary", scale=2 |
|
) |
|
btn_push_to_hub = gr.Button(value="Push to Hub", variant="primary", scale=2) |
|
return ( |
|
org_name, |
|
repo_name, |
|
private, |
|
btn_generate_full_dataset, |
|
btn_generate_and_push_to_hub, |
|
btn_push_to_hub, |
|
) |
|
|
|
|
|
def push_pipeline_code_to_hub( |
|
pipeline_code: str, |
|
org_name: str, |
|
repo_name: str, |
|
oauth_token: Union[OAuthToken, None] = None, |
|
progress=gr.Progress(), |
|
): |
|
repo_id = _check_push_to_hub(org_name, repo_name) |
|
progress(0.1, desc="Uploading pipeline code") |
|
with io.BytesIO(pipeline_code.encode("utf-8")) as f: |
|
upload_file( |
|
path_or_fileobj=f, |
|
path_in_repo="pipeline.py", |
|
repo_id=repo_id, |
|
repo_type="dataset", |
|
token=oauth_token.token, |
|
commit_message="Include pipeline script", |
|
create_pr=False, |
|
) |
|
progress(1.0, desc="Pipeline code uploaded") |
|
|
|
|
|
def push_dataset_to_hub( |
|
dataframe: pd.DataFrame, |
|
private: bool = True, |
|
org_name: str = None, |
|
repo_name: str = None, |
|
oauth_token: Union[OAuthToken, None] = None, |
|
progress=gr.Progress(), |
|
labels: List[str] = None, |
|
num_labels: int = None, |
|
task: str = TEXTCAT_TASK, |
|
) -> pd.DataFrame: |
|
progress(0.1, desc="Setting up dataset") |
|
repo_id = _check_push_to_hub(org_name, repo_name) |
|
|
|
if task == TEXTCAT_TASK: |
|
if num_labels == 1: |
|
dataframe["label"] = dataframe["label"].replace("", None) |
|
features = Features( |
|
{"text": Value("string"), "label": ClassLabel(names=labels)} |
|
) |
|
else: |
|
features = Features( |
|
{ |
|
"text": Value("string"), |
|
"labels": Sequence(feature=ClassLabel(names=labels)), |
|
} |
|
) |
|
distiset = Distiset( |
|
{"default": Dataset.from_pandas(dataframe, features=features)} |
|
) |
|
else: |
|
distiset = Distiset({"default": Dataset.from_pandas(dataframe)}) |
|
progress(0.2, desc="Pushing dataset to hub") |
|
distiset.push_to_hub( |
|
repo_id=repo_id, |
|
private=private, |
|
include_script=False, |
|
token=oauth_token.token, |
|
create_pr=False, |
|
) |
|
progress(1.0, desc="Dataset pushed to hub") |
|
return dataframe |
|
|
|
|
|
def _check_push_to_hub(org_name, repo_name): |
|
repo_id = ( |
|
f"{org_name}/{repo_name}" |
|
if repo_name is not None and org_name is not None |
|
else None |
|
) |
|
if repo_id is not None: |
|
if not all([repo_id, org_name, repo_name]): |
|
raise gr.Error( |
|
"Please provide a `repo_name` and `org_name` to push the dataset to." |
|
) |
|
return repo_id |
|
|
|
|
|
def get_final_dataset_row(default_datasets) -> gr.Dataframe: |
|
with gr.Row(): |
|
final_dataset = gr.Dataframe( |
|
value=default_datasets[0], |
|
label="Generated dataset", |
|
interactive=False, |
|
wrap=True, |
|
min_width=300, |
|
) |
|
return final_dataset |
|
|
|
|
|
def get_success_message_row() -> gr.Markdown: |
|
with gr.Row(): |
|
success_message = gr.Markdown(visible=False) |
|
return success_message |
|
|
|
|
|
def show_success_message_argilla() -> gr.Markdown: |
|
client = get_argilla_client() |
|
argilla_api_url = client.api_url |
|
return gr.Markdown( |
|
value=f""" |
|
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;"> |
|
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3> |
|
<p style="margin-top: 0.5em;"> |
|
Your dataset is now available at: |
|
<a href="{argilla_api_url}" target="_blank" style="color: #1565c0; text-decoration: none;"> |
|
{argilla_api_url} |
|
</a> |
|
<br>Unfamiliar with Argilla? Here are some docs to help you get started: |
|
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a> |
|
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a> |
|
</p> |
|
</div> |
|
""", |
|
visible=True, |
|
) |
|
|
|
|
|
def show_success_message_hub(org_name, repo_name) -> gr.Markdown: |
|
return gr.Markdown( |
|
value=f""" |
|
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;"> |
|
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3> |
|
<p style="margin-top: 0.5em;"> |
|
The generated dataset is in the right format for fine-tuning with TRL, AutoTrain or other frameworks. |
|
Your dataset is now available at: |
|
<a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;"> |
|
https://huggingface.co/datasets/{org_name}/{repo_name} |
|
</a> |
|
</p> |
|
</div> |
|
""", |
|
visible=True, |
|
) |
|
|
|
|
|
def hide_success_message() -> gr.Markdown: |
|
return gr.Markdown(visible=False) |
|
|