feat/text-classification (#11)
Browse files- feat: Add basic layout textcat (f6a1e437026116667f981091a1d55f2d0266b1cf)
- Merge branch 'main' into pr/11 (2e2beb7bc7be95d2222fecb5af5158b9325ce533)
- refactor: re-usable gradio component (54d4d8d8a537f2114a7fa56b487591a8dee99e92)
- feat: Add support for textcat (adc79cea2eb743ffc85665fd188b040bc80983ba)
- feat: Add buttons to align with textcat and textcatgenerator arguments (288d796777464cd54105e1dcc8ebf28b9fdc09dd)
- Add working textcat version (229dcf3cb0731f80012197b5ebf6815b4261d948)
- feat: Address edge cases and improve textcat UI (6a8a817258c9851000ecb128041b4872be076b00)
- fix: remove typo when copying runnable pipeline (5c28c1d076376ec1b3910666cd6311303d5c500b)
- fix: minor bug and feat:use seuqence(classlabel) for multilabel (28b1761da8c831cd53fad907bbea2603ab29c4f7)
Co-authored-by: David Berenstein <[email protected]>
- .python-version +1 -0
- app.py +3 -2
- requirements.txt +2 -1
- src/distilabel_dataset_generator/apps/base.py +526 -0
- src/distilabel_dataset_generator/apps/faq.py +1 -1
- src/distilabel_dataset_generator/apps/sft.py +219 -477
- src/distilabel_dataset_generator/apps/textcat.py +548 -0
- src/distilabel_dataset_generator/pipelines/base.py +12 -0
- src/distilabel_dataset_generator/pipelines/sft.py +5 -111
- src/distilabel_dataset_generator/pipelines/textcat.py +224 -0
- src/distilabel_dataset_generator/utils.py +29 -2
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
synthetic-data-generator
|
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
|
3 |
from src.distilabel_dataset_generator.apps.faq import app as faq_app
|
4 |
from src.distilabel_dataset_generator.apps.sft import app as sft_app
|
|
|
5 |
|
6 |
theme = gr.themes.Monochrome(
|
7 |
spacing_size="md",
|
@@ -25,8 +26,8 @@ css = """
|
|
25 |
"""
|
26 |
|
27 |
demo = gr.TabbedInterface(
|
28 |
-
[sft_app, faq_app],
|
29 |
-
["Supervised Fine-Tuning", "FAQ"],
|
30 |
css=css,
|
31 |
title="""
|
32 |
<style>
|
|
|
2 |
|
3 |
from src.distilabel_dataset_generator.apps.faq import app as faq_app
|
4 |
from src.distilabel_dataset_generator.apps.sft import app as sft_app
|
5 |
+
from src.distilabel_dataset_generator.apps.textcat import app as textcat_app
|
6 |
|
7 |
theme = gr.themes.Monochrome(
|
8 |
spacing_size="md",
|
|
|
26 |
"""
|
27 |
|
28 |
demo = gr.TabbedInterface(
|
29 |
+
[textcat_app, sft_app, faq_app],
|
30 |
+
["Text Classification", "Supervised Fine-Tuning", "FAQ"],
|
31 |
css=css,
|
32 |
title="""
|
33 |
<style>
|
@@ -3,4 +3,5 @@ gradio[oauth]
|
|
3 |
distilabel[hf-inference-endpoints,argilla]
|
4 |
beautifulsoup4
|
5 |
sentence-transformers
|
6 |
-
model2vec
|
|
|
|
3 |
distilabel[hf-inference-endpoints,argilla]
|
4 |
beautifulsoup4
|
5 |
sentence-transformers
|
6 |
+
model2vec
|
7 |
+
outlines
|
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import uuid
|
3 |
+
from typing import Any, Callable, List, Tuple, Union
|
4 |
+
|
5 |
+
import argilla as rg
|
6 |
+
import gradio as gr
|
7 |
+
import pandas as pd
|
8 |
+
from datasets import ClassLabel, Dataset, Features, Sequence, Value
|
9 |
+
from distilabel.distiset import Distiset
|
10 |
+
from gradio import OAuthToken
|
11 |
+
from huggingface_hub import HfApi, upload_file
|
12 |
+
|
13 |
+
from src.distilabel_dataset_generator.utils import (
|
14 |
+
_LOGGED_OUT_CSS,
|
15 |
+
get_argilla_client,
|
16 |
+
list_orgs,
|
17 |
+
swap_visibilty,
|
18 |
+
get_login_button,
|
19 |
+
)
|
20 |
+
|
21 |
+
TEXTCAT_TASK = "text_classification"
|
22 |
+
SFT_TASK = "supervised_fine_tuning"
|
23 |
+
|
24 |
+
|
25 |
+
def get_main_ui(
|
26 |
+
default_dataset_descriptions: List[str],
|
27 |
+
default_system_prompts: List[str],
|
28 |
+
default_datasets: List[pd.DataFrame],
|
29 |
+
fn_generate_system_prompt: Callable,
|
30 |
+
fn_generate_dataset: Callable,
|
31 |
+
task: str,
|
32 |
+
):
|
33 |
+
def fn_generate_sample_dataset(system_prompt, progress=gr.Progress()):
|
34 |
+
if system_prompt in default_system_prompts:
|
35 |
+
index = default_system_prompts.index(system_prompt)
|
36 |
+
if index < len(default_datasets):
|
37 |
+
return default_datasets[index]
|
38 |
+
if task == TEXTCAT_TASK:
|
39 |
+
result = fn_generate_dataset(
|
40 |
+
system_prompt=system_prompt,
|
41 |
+
difficulty="mixed",
|
42 |
+
clarity="mixed",
|
43 |
+
labels=[],
|
44 |
+
num_labels=1,
|
45 |
+
num_rows=1,
|
46 |
+
progress=progress,
|
47 |
+
is_sample=True,
|
48 |
+
)
|
49 |
+
else:
|
50 |
+
result = fn_generate_dataset(
|
51 |
+
system_prompt=system_prompt,
|
52 |
+
num_turns=1,
|
53 |
+
num_rows=1,
|
54 |
+
progress=progress,
|
55 |
+
is_sample=True,
|
56 |
+
)
|
57 |
+
return result
|
58 |
+
|
59 |
+
with gr.Blocks(
|
60 |
+
title="🧬 Synthetic Data Generator",
|
61 |
+
head="🧬 Synthetic Data Generator",
|
62 |
+
css=_LOGGED_OUT_CSS,
|
63 |
+
) as app:
|
64 |
+
with gr.Row():
|
65 |
+
gr.Markdown(
|
66 |
+
"Want to run this locally or with other LLMs? Take a look at the FAQ tab. distilabel Synthetic Data Generator is free, we use the authentication token to push the dataset to the Hugging Face Hub and not for data generation."
|
67 |
+
)
|
68 |
+
with gr.Row():
|
69 |
+
gr.Column()
|
70 |
+
get_login_button()
|
71 |
+
gr.Column()
|
72 |
+
|
73 |
+
gr.Markdown("## Iterate on a sample dataset")
|
74 |
+
with gr.Column() as main_ui:
|
75 |
+
(
|
76 |
+
dataset_description,
|
77 |
+
examples,
|
78 |
+
btn_generate_system_prompt,
|
79 |
+
system_prompt,
|
80 |
+
sample_dataset,
|
81 |
+
btn_generate_sample_dataset,
|
82 |
+
) = get_iterate_on_sample_dataset_ui(
|
83 |
+
default_dataset_descriptions=default_dataset_descriptions,
|
84 |
+
default_system_prompts=default_system_prompts,
|
85 |
+
default_datasets=default_datasets,
|
86 |
+
task=task,
|
87 |
+
)
|
88 |
+
gr.Markdown("## Generate full dataset")
|
89 |
+
gr.Markdown(
|
90 |
+
"Once you're satisfied with the sample, generate a larger dataset and push it to Argilla or the Hugging Face Hub."
|
91 |
+
)
|
92 |
+
with gr.Row(variant="panel") as custom_input_ui:
|
93 |
+
pass
|
94 |
+
|
95 |
+
(
|
96 |
+
dataset_name,
|
97 |
+
add_to_existing_dataset,
|
98 |
+
btn_generate_full_dataset_argilla,
|
99 |
+
btn_generate_and_push_to_argilla,
|
100 |
+
btn_push_to_argilla,
|
101 |
+
org_name,
|
102 |
+
repo_name,
|
103 |
+
private,
|
104 |
+
btn_generate_full_dataset,
|
105 |
+
btn_generate_and_push_to_hub,
|
106 |
+
btn_push_to_hub,
|
107 |
+
final_dataset,
|
108 |
+
success_message,
|
109 |
+
) = get_push_to_ui(default_datasets)
|
110 |
+
|
111 |
+
sample_dataset.change(
|
112 |
+
fn=lambda x: x,
|
113 |
+
inputs=[sample_dataset],
|
114 |
+
outputs=[final_dataset],
|
115 |
+
)
|
116 |
+
|
117 |
+
btn_generate_system_prompt.click(
|
118 |
+
fn=fn_generate_system_prompt,
|
119 |
+
inputs=[dataset_description],
|
120 |
+
outputs=[system_prompt],
|
121 |
+
show_progress=True,
|
122 |
+
).then(
|
123 |
+
fn=fn_generate_sample_dataset,
|
124 |
+
inputs=[system_prompt],
|
125 |
+
outputs=[sample_dataset],
|
126 |
+
show_progress=True,
|
127 |
+
)
|
128 |
+
|
129 |
+
btn_generate_sample_dataset.click(
|
130 |
+
fn=fn_generate_sample_dataset,
|
131 |
+
inputs=[system_prompt],
|
132 |
+
outputs=[sample_dataset],
|
133 |
+
show_progress=True,
|
134 |
+
)
|
135 |
+
|
136 |
+
app.load(fn=swap_visibilty, outputs=main_ui)
|
137 |
+
app.load(get_org_dropdown, outputs=[org_name])
|
138 |
+
|
139 |
+
return (
|
140 |
+
app,
|
141 |
+
main_ui,
|
142 |
+
custom_input_ui,
|
143 |
+
dataset_description,
|
144 |
+
examples,
|
145 |
+
btn_generate_system_prompt,
|
146 |
+
system_prompt,
|
147 |
+
sample_dataset,
|
148 |
+
btn_generate_sample_dataset,
|
149 |
+
dataset_name,
|
150 |
+
add_to_existing_dataset,
|
151 |
+
btn_generate_full_dataset_argilla,
|
152 |
+
btn_generate_and_push_to_argilla,
|
153 |
+
btn_push_to_argilla,
|
154 |
+
org_name,
|
155 |
+
repo_name,
|
156 |
+
private,
|
157 |
+
btn_generate_full_dataset,
|
158 |
+
btn_generate_and_push_to_hub,
|
159 |
+
btn_push_to_hub,
|
160 |
+
final_dataset,
|
161 |
+
success_message,
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
def validate_argilla_user_workspace_dataset(
|
166 |
+
dataset_name: str,
|
167 |
+
final_dataset: pd.DataFrame,
|
168 |
+
add_to_existing_dataset: bool,
|
169 |
+
oauth_token: Union[OAuthToken, None] = None,
|
170 |
+
progress=gr.Progress(),
|
171 |
+
) -> str:
|
172 |
+
progress(0, desc="Validating dataset configuration")
|
173 |
+
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
|
174 |
+
client = get_argilla_client()
|
175 |
+
if dataset_name is None or dataset_name == "":
|
176 |
+
raise gr.Error("Dataset name is required")
|
177 |
+
# Create user if it doesn't exist
|
178 |
+
rg_user = client.users(username=hf_user)
|
179 |
+
if rg_user is None:
|
180 |
+
rg_user = client.users.add(
|
181 |
+
rg.User(username=hf_user, role="admin", password=str(uuid.uuid4()))
|
182 |
+
)
|
183 |
+
# Create workspace if it doesn't exist
|
184 |
+
workspace = client.workspaces(name=hf_user)
|
185 |
+
if workspace is None:
|
186 |
+
workspace = client.workspaces.add(rg.Workspace(name=hf_user))
|
187 |
+
workspace.add_user(hf_user)
|
188 |
+
# Check if dataset exists
|
189 |
+
dataset = client.datasets(name=dataset_name, workspace=hf_user)
|
190 |
+
if dataset and not add_to_existing_dataset:
|
191 |
+
raise gr.Error(f"Dataset {dataset_name} already exists")
|
192 |
+
return final_dataset
|
193 |
+
|
194 |
+
|
195 |
+
def get_org_dropdown(oauth_token: OAuthToken = None):
|
196 |
+
orgs = list_orgs(oauth_token)
|
197 |
+
return gr.Dropdown(
|
198 |
+
label="Organization",
|
199 |
+
choices=orgs,
|
200 |
+
value=orgs[0] if orgs else None,
|
201 |
+
allow_custom_value=True,
|
202 |
+
)
|
203 |
+
|
204 |
+
|
205 |
+
def get_push_to_ui(default_datasets):
|
206 |
+
with gr.Column() as push_to_ui:
|
207 |
+
(
|
208 |
+
dataset_name,
|
209 |
+
add_to_existing_dataset,
|
210 |
+
btn_generate_full_dataset_argilla,
|
211 |
+
btn_generate_and_push_to_argilla,
|
212 |
+
btn_push_to_argilla,
|
213 |
+
) = get_argilla_tab()
|
214 |
+
(
|
215 |
+
org_name,
|
216 |
+
repo_name,
|
217 |
+
private,
|
218 |
+
btn_generate_full_dataset,
|
219 |
+
btn_generate_and_push_to_hub,
|
220 |
+
btn_push_to_hub,
|
221 |
+
) = get_hf_tab()
|
222 |
+
final_dataset = get_final_dataset_row(default_datasets)
|
223 |
+
success_message = get_success_message_row()
|
224 |
+
return (
|
225 |
+
dataset_name,
|
226 |
+
add_to_existing_dataset,
|
227 |
+
btn_generate_full_dataset_argilla,
|
228 |
+
btn_generate_and_push_to_argilla,
|
229 |
+
btn_push_to_argilla,
|
230 |
+
org_name,
|
231 |
+
repo_name,
|
232 |
+
private,
|
233 |
+
btn_generate_full_dataset,
|
234 |
+
btn_generate_and_push_to_hub,
|
235 |
+
btn_push_to_hub,
|
236 |
+
final_dataset,
|
237 |
+
success_message,
|
238 |
+
)
|
239 |
+
|
240 |
+
|
241 |
+
def get_iterate_on_sample_dataset_ui(
|
242 |
+
default_dataset_descriptions: List[str],
|
243 |
+
default_system_prompts: List[str],
|
244 |
+
default_datasets: List[pd.DataFrame],
|
245 |
+
task: str,
|
246 |
+
):
|
247 |
+
with gr.Column():
|
248 |
+
dataset_description = gr.TextArea(
|
249 |
+
label="Give a precise description of your desired application. Check the examples for inspiration.",
|
250 |
+
value=default_dataset_descriptions[0],
|
251 |
+
lines=2,
|
252 |
+
)
|
253 |
+
examples = gr.Examples(
|
254 |
+
elem_id="system_prompt_examples",
|
255 |
+
examples=[[example] for example in default_dataset_descriptions],
|
256 |
+
inputs=[dataset_description],
|
257 |
+
)
|
258 |
+
with gr.Row():
|
259 |
+
gr.Column(scale=1)
|
260 |
+
btn_generate_system_prompt = gr.Button(
|
261 |
+
value="Generate system prompt and sample dataset"
|
262 |
+
)
|
263 |
+
gr.Column(scale=1)
|
264 |
+
|
265 |
+
system_prompt = gr.TextArea(
|
266 |
+
label="System prompt for dataset generation. You can tune it and regenerate the sample.",
|
267 |
+
value=default_system_prompts[0],
|
268 |
+
lines=2 if task == TEXTCAT_TASK else 5,
|
269 |
+
)
|
270 |
+
|
271 |
+
with gr.Row():
|
272 |
+
sample_dataset = gr.Dataframe(
|
273 |
+
value=default_datasets[0],
|
274 |
+
label="Sample dataset. Prompts and completions truncated to 256 tokens.",
|
275 |
+
interactive=False,
|
276 |
+
wrap=True,
|
277 |
+
)
|
278 |
+
|
279 |
+
with gr.Row():
|
280 |
+
gr.Column(scale=1)
|
281 |
+
btn_generate_sample_dataset = gr.Button(
|
282 |
+
value="Generate sample dataset",
|
283 |
+
)
|
284 |
+
gr.Column(scale=1)
|
285 |
+
|
286 |
+
return (
|
287 |
+
dataset_description,
|
288 |
+
examples,
|
289 |
+
btn_generate_system_prompt,
|
290 |
+
system_prompt,
|
291 |
+
sample_dataset,
|
292 |
+
btn_generate_sample_dataset,
|
293 |
+
)
|
294 |
+
|
295 |
+
|
296 |
+
def get_pipeline_code_ui(pipeline_code: str) -> gr.Code:
|
297 |
+
gr.Markdown("## Or run this pipeline locally with distilabel")
|
298 |
+
gr.Markdown(
|
299 |
+
"You can run this pipeline locally with distilabel. For more information, please refer to the [distilabel documentation](https://distilabel.argilla.io/) or go to the FAQ tab at the top of the page for more information."
|
300 |
+
)
|
301 |
+
with gr.Accordion(
|
302 |
+
"Run this pipeline using distilabel",
|
303 |
+
open=False,
|
304 |
+
):
|
305 |
+
pipeline_code = gr.Code(
|
306 |
+
value=pipeline_code,
|
307 |
+
language="python",
|
308 |
+
label="Distilabel Pipeline Code",
|
309 |
+
)
|
310 |
+
return pipeline_code
|
311 |
+
|
312 |
+
|
313 |
+
def get_argilla_tab() -> Tuple[Any]:
|
314 |
+
with gr.Tab(label="Argilla"):
|
315 |
+
if get_argilla_client() is not None:
|
316 |
+
with gr.Row(variant="panel"):
|
317 |
+
dataset_name = gr.Textbox(
|
318 |
+
label="Dataset name",
|
319 |
+
placeholder="dataset_name",
|
320 |
+
value="my-distiset",
|
321 |
+
)
|
322 |
+
add_to_existing_dataset = gr.Checkbox(
|
323 |
+
label="Allow adding records to existing dataset",
|
324 |
+
info="When selected, you do need to ensure the dataset options are the same as in the existing dataset.",
|
325 |
+
value=False,
|
326 |
+
interactive=True,
|
327 |
+
scale=1,
|
328 |
+
)
|
329 |
+
|
330 |
+
with gr.Row(variant="panel"):
|
331 |
+
btn_generate_full_dataset_argilla = gr.Button(
|
332 |
+
value="Generate", variant="primary", scale=2
|
333 |
+
)
|
334 |
+
btn_generate_and_push_to_argilla = gr.Button(
|
335 |
+
value="Generate and Push to Argilla",
|
336 |
+
variant="primary",
|
337 |
+
scale=2,
|
338 |
+
)
|
339 |
+
btn_push_to_argilla = gr.Button(
|
340 |
+
value="Push to Argilla", variant="primary", scale=2
|
341 |
+
)
|
342 |
+
else:
|
343 |
+
gr.Markdown(
|
344 |
+
"Please add `ARGILLA_API_URL` and `ARGILLA_API_KEY` to use Argilla or export the dataset to the Hugging Face Hub."
|
345 |
+
)
|
346 |
+
return (
|
347 |
+
dataset_name,
|
348 |
+
add_to_existing_dataset,
|
349 |
+
btn_generate_full_dataset_argilla,
|
350 |
+
btn_generate_and_push_to_argilla,
|
351 |
+
btn_push_to_argilla,
|
352 |
+
)
|
353 |
+
|
354 |
+
|
355 |
+
def get_hf_tab() -> Tuple[Any]:
|
356 |
+
with gr.Tab("Hugging Face Hub"):
|
357 |
+
with gr.Row(variant="panel"):
|
358 |
+
org_name = get_org_dropdown()
|
359 |
+
repo_name = gr.Textbox(
|
360 |
+
label="Repo name",
|
361 |
+
placeholder="dataset_name",
|
362 |
+
value="my-distiset",
|
363 |
+
)
|
364 |
+
private = gr.Checkbox(
|
365 |
+
label="Private dataset",
|
366 |
+
value=True,
|
367 |
+
interactive=True,
|
368 |
+
scale=1,
|
369 |
+
)
|
370 |
+
with gr.Row(variant="panel"):
|
371 |
+
btn_generate_full_dataset = gr.Button(
|
372 |
+
value="Generate", variant="primary", scale=2
|
373 |
+
)
|
374 |
+
btn_generate_and_push_to_hub = gr.Button(
|
375 |
+
value="Generate and Push to Hub", variant="primary", scale=2
|
376 |
+
)
|
377 |
+
btn_push_to_hub = gr.Button(value="Push to Hub", variant="primary", scale=2)
|
378 |
+
return (
|
379 |
+
org_name,
|
380 |
+
repo_name,
|
381 |
+
private,
|
382 |
+
btn_generate_full_dataset,
|
383 |
+
btn_generate_and_push_to_hub,
|
384 |
+
btn_push_to_hub,
|
385 |
+
)
|
386 |
+
|
387 |
+
|
388 |
+
def push_pipeline_code_to_hub(
|
389 |
+
pipeline_code: str,
|
390 |
+
org_name: str,
|
391 |
+
repo_name: str,
|
392 |
+
oauth_token: Union[OAuthToken, None] = None,
|
393 |
+
progress=gr.Progress(),
|
394 |
+
):
|
395 |
+
repo_id = _check_push_to_hub(org_name, repo_name)
|
396 |
+
progress(0.1, desc="Uploading pipeline code")
|
397 |
+
with io.BytesIO(pipeline_code.encode("utf-8")) as f:
|
398 |
+
upload_file(
|
399 |
+
path_or_fileobj=f,
|
400 |
+
path_in_repo="pipeline.py",
|
401 |
+
repo_id=repo_id,
|
402 |
+
repo_type="dataset",
|
403 |
+
token=oauth_token.token,
|
404 |
+
commit_message="Include pipeline script",
|
405 |
+
create_pr=False,
|
406 |
+
)
|
407 |
+
progress(1.0, desc="Pipeline code uploaded")
|
408 |
+
|
409 |
+
|
410 |
+
def push_dataset_to_hub(
|
411 |
+
dataframe: pd.DataFrame,
|
412 |
+
private: bool = True,
|
413 |
+
org_name: str = None,
|
414 |
+
repo_name: str = None,
|
415 |
+
oauth_token: Union[OAuthToken, None] = None,
|
416 |
+
progress=gr.Progress(),
|
417 |
+
labels: List[str] = None,
|
418 |
+
num_labels: int = None,
|
419 |
+
task: str = TEXTCAT_TASK,
|
420 |
+
) -> pd.DataFrame:
|
421 |
+
progress(0.1, desc="Setting up dataset")
|
422 |
+
repo_id = _check_push_to_hub(org_name, repo_name)
|
423 |
+
|
424 |
+
if task == TEXTCAT_TASK:
|
425 |
+
if num_labels == 1:
|
426 |
+
features = Features(
|
427 |
+
{"text": Value("string"), "label": ClassLabel(names=labels)}
|
428 |
+
)
|
429 |
+
else:
|
430 |
+
features = Features({
|
431 |
+
"text": Value("string"),
|
432 |
+
"labels": Sequence(feature=ClassLabel(names=labels))
|
433 |
+
})
|
434 |
+
distiset = Distiset({
|
435 |
+
"default": Dataset.from_pandas(dataframe, features=features)
|
436 |
+
})
|
437 |
+
else:
|
438 |
+
distiset = Distiset({
|
439 |
+
"default": Dataset.from_pandas(dataframe)
|
440 |
+
})
|
441 |
+
progress(0.2, desc="Pushing dataset to hub")
|
442 |
+
distiset.push_to_hub(
|
443 |
+
repo_id=repo_id,
|
444 |
+
private=private,
|
445 |
+
include_script=False,
|
446 |
+
token=oauth_token.token,
|
447 |
+
create_pr=False,
|
448 |
+
)
|
449 |
+
progress(1.0, desc="Dataset pushed to hub")
|
450 |
+
return dataframe
|
451 |
+
|
452 |
+
|
453 |
+
def _check_push_to_hub(org_name, repo_name):
|
454 |
+
repo_id = (
|
455 |
+
f"{org_name}/{repo_name}"
|
456 |
+
if repo_name is not None and org_name is not None
|
457 |
+
else None
|
458 |
+
)
|
459 |
+
if repo_id is not None:
|
460 |
+
if not all([repo_id, org_name, repo_name]):
|
461 |
+
raise gr.Error(
|
462 |
+
"Please provide a `repo_name` and `org_name` to push the dataset to."
|
463 |
+
)
|
464 |
+
return repo_id
|
465 |
+
|
466 |
+
|
467 |
+
def get_final_dataset_row(default_datasets) -> gr.Dataframe:
|
468 |
+
with gr.Row():
|
469 |
+
final_dataset = gr.Dataframe(
|
470 |
+
value=default_datasets[0],
|
471 |
+
label="Generated dataset",
|
472 |
+
interactive=False,
|
473 |
+
wrap=True,
|
474 |
+
min_width=300,
|
475 |
+
)
|
476 |
+
return final_dataset
|
477 |
+
|
478 |
+
|
479 |
+
def get_success_message_row() -> gr.Markdown:
|
480 |
+
with gr.Row():
|
481 |
+
success_message = gr.Markdown(visible=False)
|
482 |
+
return success_message
|
483 |
+
|
484 |
+
|
485 |
+
def show_success_message_argilla() -> gr.Markdown:
|
486 |
+
client = get_argilla_client()
|
487 |
+
argilla_api_url = client.api_url
|
488 |
+
return gr.Markdown(
|
489 |
+
value=f"""
|
490 |
+
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
|
491 |
+
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
|
492 |
+
<p style="margin-top: 0.5em;">
|
493 |
+
Your dataset is now available at:
|
494 |
+
<a href="{argilla_api_url}" target="_blank" style="color: #1565c0; text-decoration: none;">
|
495 |
+
{argilla_api_url}
|
496 |
+
</a>
|
497 |
+
<br>Unfamiliar with Argilla? Here are some docs to help you get started:
|
498 |
+
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
|
499 |
+
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
|
500 |
+
</p>
|
501 |
+
</div>
|
502 |
+
""",
|
503 |
+
visible=True,
|
504 |
+
)
|
505 |
+
|
506 |
+
|
507 |
+
def show_success_message_hub(org_name, repo_name) -> gr.Markdown:
|
508 |
+
return gr.Markdown(
|
509 |
+
value=f"""
|
510 |
+
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
|
511 |
+
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
|
512 |
+
<p style="margin-top: 0.5em;">
|
513 |
+
The generated dataset is in the right format for fine-tuning with TRL, AutoTrain or other frameworks.
|
514 |
+
Your dataset is now available at:
|
515 |
+
<a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;">
|
516 |
+
https://huggingface.co/datasets/{org_name}/{repo_name}
|
517 |
+
</a>
|
518 |
+
</p>
|
519 |
+
</div>
|
520 |
+
""",
|
521 |
+
visible=True,
|
522 |
+
)
|
523 |
+
|
524 |
+
|
525 |
+
def hide_success_message() -> gr.Markdown:
|
526 |
+
return gr.Markdown(visible=False)
|
@@ -15,7 +15,7 @@ with gr.Blocks() as app:
|
|
15 |
<p>This tool simplifies the process of creating custom datasets, enabling you to:</p>
|
16 |
<ul>
|
17 |
<li>Define the characteristics of your desired application</li>
|
18 |
-
<li>Generate system prompts automatically</li>
|
19 |
<li>Create sample datasets for quick iteration</li>
|
20 |
<li>Produce full-scale datasets with customizable parameters</li>
|
21 |
<li>Push your generated datasets directly to the Hugging Face Hub</li>
|
|
|
15 |
<p>This tool simplifies the process of creating custom datasets, enabling you to:</p>
|
16 |
<ul>
|
17 |
<li>Define the characteristics of your desired application</li>
|
18 |
+
<li>Generate system prompts and tasks automatically</li>
|
19 |
<li>Create sample datasets for quick iteration</li>
|
20 |
<li>Produce full-scale datasets with customizable parameters</li>
|
21 |
<li>Push your generated datasets directly to the Hugging Face Hub</li>
|
@@ -1,6 +1,4 @@
|
|
1 |
import ast
|
2 |
-
import io
|
3 |
-
import uuid
|
4 |
from typing import Dict, List, Union
|
5 |
|
6 |
import argilla as rg
|
@@ -8,17 +6,29 @@ import gradio as gr
|
|
8 |
import pandas as pd
|
9 |
from datasets import Dataset
|
10 |
from distilabel.distiset import Distiset
|
11 |
-
from
|
12 |
-
from gradio.oauth import OAuthToken
|
13 |
-
from huggingface_hub import upload_file
|
14 |
-
from huggingface_hub.hf_api import HfApi
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
from src.distilabel_dataset_generator.pipelines.embeddings import (
|
17 |
get_embeddings,
|
18 |
get_sentence_embedding_dimensions,
|
19 |
)
|
20 |
from src.distilabel_dataset_generator.pipelines.sft import (
|
21 |
-
DEFAULT_BATCH_SIZE,
|
22 |
DEFAULT_DATASET_DESCRIPTIONS,
|
23 |
DEFAULT_DATASETS,
|
24 |
DEFAULT_SYSTEM_PROMPTS,
|
@@ -28,222 +38,52 @@ from src.distilabel_dataset_generator.pipelines.sft import (
|
|
28 |
get_prompt_generator,
|
29 |
get_response_generator,
|
30 |
)
|
31 |
-
from src.distilabel_dataset_generator.utils import (
|
32 |
-
get_argilla_client,
|
33 |
-
get_login_button,
|
34 |
-
get_org_dropdown,
|
35 |
-
swap_visibilty,
|
36 |
-
)
|
37 |
-
|
38 |
-
|
39 |
-
def convert_to_list_of_dicts(messages: str) -> List[Dict[str, str]]:
|
40 |
-
return ast.literal_eval(
|
41 |
-
messages.replace("'user'}", "'user'},")
|
42 |
-
.replace("'system'}", "'system'},")
|
43 |
-
.replace("'assistant'}", "'assistant'},")
|
44 |
-
)
|
45 |
|
|
|
46 |
|
47 |
-
def generate_system_prompt(dataset_description, progress=gr.Progress()):
|
48 |
-
progress(0.0, desc="Generating system prompt")
|
49 |
-
if dataset_description in DEFAULT_DATASET_DESCRIPTIONS:
|
50 |
-
index = DEFAULT_DATASET_DESCRIPTIONS.index(dataset_description)
|
51 |
-
if index < len(DEFAULT_SYSTEM_PROMPTS):
|
52 |
-
return DEFAULT_SYSTEM_PROMPTS[index]
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
{
|
61 |
-
"system_prompt": PROMPT_CREATION_PROMPT,
|
62 |
-
"instruction": dataset_description,
|
63 |
-
}
|
64 |
-
]
|
65 |
)
|
66 |
-
)[0]["generation"]
|
67 |
-
progress(1.0, desc="System prompt generated")
|
68 |
-
return result
|
69 |
-
|
70 |
-
|
71 |
-
def generate_sample_dataset(system_prompt, progress=gr.Progress()):
|
72 |
-
if system_prompt in DEFAULT_SYSTEM_PROMPTS:
|
73 |
-
index = DEFAULT_SYSTEM_PROMPTS.index(system_prompt)
|
74 |
-
if index < len(DEFAULT_DATASETS):
|
75 |
-
return DEFAULT_DATASETS[index]
|
76 |
-
result = generate_dataset(
|
77 |
-
system_prompt, num_turns=1, num_rows=1, progress=progress, is_sample=True
|
78 |
-
)
|
79 |
-
return result
|
80 |
-
|
81 |
-
|
82 |
-
def _check_push_to_hub(org_name, repo_name):
|
83 |
-
repo_id = (
|
84 |
-
f"{org_name}/{repo_name}"
|
85 |
-
if repo_name is not None and org_name is not None
|
86 |
-
else None
|
87 |
-
)
|
88 |
-
if repo_id is not None:
|
89 |
-
if not all([repo_id, org_name, repo_name]):
|
90 |
-
raise gr.Error(
|
91 |
-
"Please provide a `repo_name` and `org_name` to push the dataset to."
|
92 |
-
)
|
93 |
-
return repo_id
|
94 |
-
|
95 |
-
|
96 |
-
def generate_dataset(
|
97 |
-
system_prompt: str,
|
98 |
-
num_turns: int = 1,
|
99 |
-
num_rows: int = 5,
|
100 |
-
is_sample: bool = False,
|
101 |
-
progress=gr.Progress(),
|
102 |
-
) -> pd.DataFrame:
|
103 |
-
progress(0.0, desc="(1/2) Generating instructions")
|
104 |
-
magpie_generator = get_magpie_generator(
|
105 |
-
num_turns, num_rows, system_prompt, is_sample
|
106 |
-
)
|
107 |
-
response_generator = get_response_generator(num_turns, system_prompt, is_sample)
|
108 |
-
total_steps: int = num_rows * 2
|
109 |
-
batch_size = DEFAULT_BATCH_SIZE
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
while n_processed < num_rows:
|
115 |
-
progress(
|
116 |
-
0.5 * n_processed / num_rows,
|
117 |
-
total=total_steps,
|
118 |
-
desc="(1/2) Generating instructions",
|
119 |
)
|
120 |
-
remaining_rows = num_rows - n_processed
|
121 |
-
batch_size = min(batch_size, remaining_rows)
|
122 |
-
inputs = [{"system_prompt": system_prompt} for _ in range(batch_size)]
|
123 |
-
batch = list(magpie_generator.process(inputs=inputs))
|
124 |
-
magpie_results.extend(batch[0])
|
125 |
-
n_processed += batch_size
|
126 |
-
progress(0.5, desc="(1/2) Generating instructions")
|
127 |
-
|
128 |
-
# generate responses
|
129 |
-
n_processed = 0
|
130 |
-
response_results = []
|
131 |
-
if num_turns == 1:
|
132 |
-
while n_processed < num_rows:
|
133 |
-
progress(
|
134 |
-
0.5 + 0.5 * n_processed / num_rows,
|
135 |
-
total=total_steps,
|
136 |
-
desc="(2/2) Generating responses",
|
137 |
-
)
|
138 |
-
batch = magpie_results[n_processed : n_processed + batch_size]
|
139 |
-
responses = list(response_generator.process(inputs=batch))
|
140 |
-
response_results.extend(responses[0])
|
141 |
-
n_processed += batch_size
|
142 |
-
for result in response_results:
|
143 |
-
result["prompt"] = result["instruction"]
|
144 |
-
result["completion"] = result["generation"]
|
145 |
-
result["system_prompt"] = system_prompt
|
146 |
-
else:
|
147 |
-
for result in magpie_results:
|
148 |
-
result["conversation"].insert(
|
149 |
-
0, {"role": "system", "content": system_prompt}
|
150 |
-
)
|
151 |
-
result["messages"] = result["conversation"]
|
152 |
-
while n_processed < num_rows:
|
153 |
-
progress(
|
154 |
-
0.5 + 0.5 * n_processed / num_rows,
|
155 |
-
total=total_steps,
|
156 |
-
desc="(2/2) Generating responses",
|
157 |
-
)
|
158 |
-
batch = magpie_results[n_processed : n_processed + batch_size]
|
159 |
-
responses = list(response_generator.process(inputs=batch))
|
160 |
-
response_results.extend(responses[0])
|
161 |
-
n_processed += batch_size
|
162 |
-
for result in response_results:
|
163 |
-
result["messages"].append(
|
164 |
-
{"role": "assistant", "content": result["generation"]}
|
165 |
-
)
|
166 |
-
progress(
|
167 |
-
1,
|
168 |
-
total=total_steps,
|
169 |
-
desc="(2/2) Generating responses",
|
170 |
-
)
|
171 |
-
|
172 |
-
# create distiset
|
173 |
-
distiset_results = []
|
174 |
-
for result in response_results:
|
175 |
-
record = {}
|
176 |
-
for relevant_keys in [
|
177 |
-
"messages",
|
178 |
-
"prompt",
|
179 |
-
"completion",
|
180 |
-
"model_name",
|
181 |
-
"system_prompt",
|
182 |
-
]:
|
183 |
-
if relevant_keys in result:
|
184 |
-
record[relevant_keys] = result[relevant_keys]
|
185 |
-
distiset_results.append(record)
|
186 |
-
|
187 |
-
distiset = Distiset(
|
188 |
-
{
|
189 |
-
"default": Dataset.from_list(distiset_results),
|
190 |
-
}
|
191 |
-
)
|
192 |
-
|
193 |
-
# If not pushing to hub generate the dataset directly
|
194 |
-
distiset = distiset["default"]
|
195 |
-
if num_turns == 1:
|
196 |
-
outputs = distiset.to_pandas()[["system_prompt", "prompt", "completion"]]
|
197 |
-
else:
|
198 |
-
outputs = distiset.to_pandas()[["messages"]]
|
199 |
-
dataframe = pd.DataFrame(outputs)
|
200 |
-
progress(1.0, desc="Dataset generation completed")
|
201 |
return dataframe
|
202 |
|
203 |
|
204 |
-
def
|
205 |
dataframe: pd.DataFrame,
|
206 |
private: bool = True,
|
207 |
org_name: str = None,
|
208 |
repo_name: str = None,
|
209 |
-
oauth_token: Union[OAuthToken, None] = None,
|
210 |
progress=gr.Progress(),
|
211 |
-
)
|
212 |
original_dataframe = dataframe.copy(deep=True)
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
216 |
)
|
217 |
-
|
218 |
-
|
219 |
-
distiset = Distiset(
|
220 |
-
{
|
221 |
-
"default": Dataset.from_pandas(dataframe),
|
222 |
-
}
|
223 |
-
)
|
224 |
-
progress(0.2, desc="Pushing dataset to hub")
|
225 |
-
distiset.push_to_hub(
|
226 |
-
repo_id=repo_id,
|
227 |
-
private=private,
|
228 |
-
include_script=False,
|
229 |
-
token=oauth_token.token,
|
230 |
-
create_pr=False,
|
231 |
-
)
|
232 |
-
progress(1.0, desc="Dataset pushed to hub")
|
233 |
return original_dataframe
|
234 |
|
235 |
|
236 |
-
def
|
237 |
dataframe: pd.DataFrame,
|
238 |
dataset_name: str,
|
239 |
-
oauth_token: Union[OAuthToken, None] = None,
|
240 |
progress=gr.Progress(),
|
241 |
) -> pd.DataFrame:
|
242 |
original_dataframe = dataframe.copy(deep=True)
|
243 |
-
|
244 |
-
dataframe["messages"] = dataframe["messages"].apply(
|
245 |
-
lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x
|
246 |
-
)
|
247 |
try:
|
248 |
progress(0.1, desc="Setting up user and workspace")
|
249 |
client = get_argilla_client()
|
@@ -363,294 +203,198 @@ def push_to_argilla(
|
|
363 |
return original_dataframe
|
364 |
|
365 |
|
366 |
-
def
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
) -> str:
|
373 |
-
progress(0, desc="Validating dataset configuration")
|
374 |
-
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
|
375 |
-
client = get_argilla_client()
|
376 |
-
if dataset_name is None or dataset_name == "":
|
377 |
-
raise gr.Error("Dataset name is required")
|
378 |
-
# Create user if it doesn't exist
|
379 |
-
rg_user = client.users(username=hf_user)
|
380 |
-
if rg_user is None:
|
381 |
-
rg_user = client.users.add(
|
382 |
-
rg.User(username=hf_user, role="admin", password=str(uuid.uuid4()))
|
383 |
-
)
|
384 |
-
# Create workspace if it doesn't exist
|
385 |
-
workspace = client.workspaces(name=hf_user)
|
386 |
-
if workspace is None:
|
387 |
-
workspace = client.workspaces.add(rg.Workspace(name=hf_user))
|
388 |
-
workspace.add_user(rg_user)
|
389 |
-
# Check if dataset exists
|
390 |
-
dataset = client.datasets(name=dataset_name, workspace=hf_user)
|
391 |
-
if dataset and not add_to_existing_dataset:
|
392 |
-
raise gr.Error(f"Dataset {dataset_name} already exists")
|
393 |
-
return final_dataset
|
394 |
-
|
395 |
-
|
396 |
-
def upload_pipeline_code(
|
397 |
-
pipeline_code,
|
398 |
-
org_name,
|
399 |
-
repo_name,
|
400 |
-
oauth_token: Union[OAuthToken, None] = None,
|
401 |
-
progress=gr.Progress(),
|
402 |
-
):
|
403 |
-
repo_id = _check_push_to_hub(org_name, repo_name)
|
404 |
-
progress(0.1, desc="Uploading pipeline code")
|
405 |
-
with io.BytesIO(pipeline_code.encode("utf-8")) as f:
|
406 |
-
upload_file(
|
407 |
-
path_or_fileobj=f,
|
408 |
-
path_in_repo="pipeline.py",
|
409 |
-
repo_id=repo_id,
|
410 |
-
repo_type="dataset",
|
411 |
-
token=oauth_token.token,
|
412 |
-
commit_message="Include pipeline script",
|
413 |
-
create_pr=False,
|
414 |
-
)
|
415 |
-
progress(1.0, desc="Pipeline code uploaded")
|
416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
|
418 |
-
css = """
|
419 |
-
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
|
420 |
-
"""
|
421 |
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
gr.Markdown("## Iterate on a sample dataset")
|
437 |
-
with gr.Column() as main_ui:
|
438 |
-
dataset_description = gr.TextArea(
|
439 |
-
label="Give a precise description of the assistant or tool. Don't describe the dataset",
|
440 |
-
value=DEFAULT_DATASET_DESCRIPTIONS[0],
|
441 |
-
lines=2,
|
442 |
-
)
|
443 |
-
examples = gr.Examples(
|
444 |
-
elem_id="system_prompt_examples",
|
445 |
-
examples=[[example] for example in DEFAULT_DATASET_DESCRIPTIONS],
|
446 |
-
inputs=[dataset_description],
|
447 |
-
)
|
448 |
-
with gr.Row():
|
449 |
-
gr.Column(scale=1)
|
450 |
-
btn_generate_system_prompt = gr.Button(
|
451 |
-
value="Generate system prompt and sample dataset"
|
452 |
-
)
|
453 |
-
gr.Column(scale=1)
|
454 |
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
|
|
|
|
|
|
|
|
459 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
|
|
|
|
|
|
467 |
)
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
)
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
# Add a header for the full dataset generation section
|
496 |
-
gr.Markdown("## Generate full dataset")
|
497 |
-
gr.Markdown(
|
498 |
-
"Once you're satisfied with the sample, generate a larger dataset and push it to Argilla or the Hugging Face Hub."
|
499 |
-
)
|
500 |
-
|
501 |
-
with gr.Column() as push_to_hub_ui:
|
502 |
-
with gr.Row(variant="panel"):
|
503 |
-
num_turns = gr.Number(
|
504 |
-
value=1,
|
505 |
-
label="Number of turns in the conversation",
|
506 |
-
minimum=1,
|
507 |
-
maximum=4,
|
508 |
-
step=1,
|
509 |
-
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).",
|
510 |
-
)
|
511 |
-
num_rows = gr.Number(
|
512 |
-
value=10,
|
513 |
-
label="Number of rows in the dataset",
|
514 |
-
minimum=1,
|
515 |
-
maximum=500,
|
516 |
-
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
|
517 |
-
)
|
518 |
-
|
519 |
-
with gr.Tab(label="Argilla"):
|
520 |
-
if get_argilla_client() is not None:
|
521 |
-
with gr.Row(variant="panel"):
|
522 |
-
dataset_name = gr.Textbox(
|
523 |
-
label="Dataset name",
|
524 |
-
placeholder="dataset_name",
|
525 |
-
value="my-distiset",
|
526 |
-
)
|
527 |
-
add_to_existing_dataset = gr.Checkbox(
|
528 |
-
label="Allow adding records to existing dataset",
|
529 |
-
info="When selected, you do need to ensure the number of turns in the conversation is the same as the number of turns in the existing dataset.",
|
530 |
-
value=False,
|
531 |
-
interactive=True,
|
532 |
-
scale=0.5,
|
533 |
-
)
|
534 |
-
|
535 |
-
with gr.Row(variant="panel"):
|
536 |
-
btn_generate_full_dataset_copy = gr.Button(
|
537 |
-
value="Generate", variant="primary", scale=2
|
538 |
-
)
|
539 |
-
btn_generate_and_push_to_argilla = gr.Button(
|
540 |
-
value="Generate and Push to Argilla",
|
541 |
-
variant="primary",
|
542 |
-
scale=2,
|
543 |
-
)
|
544 |
-
btn_push_to_argilla = gr.Button(
|
545 |
-
value="Push to Argilla", variant="primary", scale=2
|
546 |
-
)
|
547 |
-
else:
|
548 |
-
gr.Markdown(
|
549 |
-
"Please add `ARGILLA_API_URL` and `ARGILLA_API_KEY` to use Argilla or export the dataset to the Hugging Face Hub."
|
550 |
-
)
|
551 |
-
with gr.Tab("Hugging Face Hub"):
|
552 |
-
with gr.Row(variant="panel"):
|
553 |
-
org_name = get_org_dropdown()
|
554 |
-
repo_name = gr.Textbox(
|
555 |
-
label="Repo name",
|
556 |
-
placeholder="dataset_name",
|
557 |
-
value="my-distiset",
|
558 |
-
)
|
559 |
-
private = gr.Checkbox(
|
560 |
-
label="Private dataset",
|
561 |
-
value=True,
|
562 |
-
interactive=True,
|
563 |
-
scale=0.5,
|
564 |
-
)
|
565 |
-
with gr.Row(variant="panel"):
|
566 |
-
btn_generate_full_dataset = gr.Button(
|
567 |
-
value="Generate", variant="primary", scale=2
|
568 |
-
)
|
569 |
-
btn_generate_and_push_to_hub = gr.Button(
|
570 |
-
value="Generate and Push to Hub", variant="primary", scale=2
|
571 |
-
)
|
572 |
-
btn_push_to_hub = gr.Button(
|
573 |
-
value="Push to Hub", variant="primary", scale=2
|
574 |
-
)
|
575 |
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
583 |
|
584 |
-
|
585 |
-
|
|
|
|
|
|
|
586 |
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
<a href="{argilla_api_url}" target="_blank" style="color: #1565c0; text-decoration: none;">
|
597 |
-
{argilla_api_url}
|
598 |
-
</a>
|
599 |
-
<br>Unfamiliar with Argilla? Here are some docs to help you get started:
|
600 |
-
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
|
601 |
-
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
|
602 |
-
</p>
|
603 |
-
</div>
|
604 |
-
""",
|
605 |
-
visible=True,
|
606 |
-
)
|
607 |
|
608 |
-
def show_success_message_hub(org_name, repo_name):
|
609 |
-
return gr.Markdown(
|
610 |
-
value=f"""
|
611 |
-
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
|
612 |
-
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
|
613 |
-
<p style="margin-top: 0.5em;">
|
614 |
-
The generated dataset is in the right format for fine-tuning with TRL, AutoTrain or other frameworks.
|
615 |
-
Your dataset is now available at:
|
616 |
-
<a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;">
|
617 |
-
https://huggingface.co/datasets/{org_name}/{repo_name}
|
618 |
-
</a>
|
619 |
-
</p>
|
620 |
-
</div>
|
621 |
-
""",
|
622 |
-
visible=True,
|
623 |
-
)
|
624 |
|
625 |
-
|
626 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
627 |
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
632 |
|
633 |
-
|
634 |
-
|
635 |
-
open=False,
|
636 |
-
):
|
637 |
-
pipeline_code = gr.Code(
|
638 |
-
value=generate_pipeline_code(
|
639 |
-
system_prompt.value, num_turns.value, num_rows.value
|
640 |
-
),
|
641 |
-
language="python",
|
642 |
-
label="Distilabel Pipeline Code",
|
643 |
)
|
644 |
|
645 |
-
|
646 |
-
fn=lambda x: x,
|
647 |
-
inputs=[sample_dataset],
|
648 |
-
outputs=[final_dataset],
|
649 |
-
)
|
650 |
gr.on(
|
651 |
triggers=[
|
652 |
btn_generate_full_dataset.click,
|
653 |
-
|
654 |
],
|
655 |
fn=hide_success_message,
|
656 |
outputs=[success_message],
|
@@ -662,7 +406,7 @@ with gr.Blocks(
|
|
662 |
)
|
663 |
|
664 |
btn_generate_and_push_to_argilla.click(
|
665 |
-
fn=
|
666 |
inputs=[dataset_name, final_dataset, add_to_existing_dataset],
|
667 |
outputs=[final_dataset],
|
668 |
show_progress=True,
|
@@ -675,7 +419,7 @@ with gr.Blocks(
|
|
675 |
outputs=[final_dataset],
|
676 |
show_progress=True,
|
677 |
).success(
|
678 |
-
fn=
|
679 |
inputs=[final_dataset, dataset_name],
|
680 |
outputs=[final_dataset],
|
681 |
show_progress=True,
|
@@ -694,12 +438,12 @@ with gr.Blocks(
|
|
694 |
outputs=[final_dataset],
|
695 |
show_progress=True,
|
696 |
).then(
|
697 |
-
fn=
|
698 |
inputs=[final_dataset, private, org_name, repo_name],
|
699 |
outputs=[final_dataset],
|
700 |
show_progress=True,
|
701 |
).then(
|
702 |
-
fn=
|
703 |
inputs=[pipeline_code, org_name, repo_name],
|
704 |
outputs=[],
|
705 |
show_progress=True,
|
@@ -713,12 +457,12 @@ with gr.Blocks(
|
|
713 |
fn=hide_success_message,
|
714 |
outputs=[success_message],
|
715 |
).then(
|
716 |
-
fn=
|
717 |
inputs=[final_dataset, private, org_name, repo_name],
|
718 |
outputs=[final_dataset],
|
719 |
show_progress=True,
|
720 |
).then(
|
721 |
-
fn=
|
722 |
inputs=[pipeline_code, org_name, repo_name],
|
723 |
outputs=[],
|
724 |
show_progress=True,
|
@@ -732,12 +476,12 @@ with gr.Blocks(
|
|
732 |
fn=hide_success_message,
|
733 |
outputs=[success_message],
|
734 |
).success(
|
735 |
-
fn=
|
736 |
inputs=[dataset_name, final_dataset, add_to_existing_dataset],
|
737 |
outputs=[final_dataset],
|
738 |
show_progress=True,
|
739 |
).success(
|
740 |
-
fn=
|
741 |
inputs=[final_dataset, dataset_name],
|
742 |
outputs=[final_dataset],
|
743 |
show_progress=True,
|
@@ -762,5 +506,3 @@ with gr.Blocks(
|
|
762 |
inputs=[system_prompt, num_turns, num_rows],
|
763 |
outputs=[pipeline_code],
|
764 |
)
|
765 |
-
app.load(get_org_dropdown, outputs=[org_name])
|
766 |
-
app.load(fn=swap_visibilty, outputs=main_ui)
|
|
|
1 |
import ast
|
|
|
|
|
2 |
from typing import Dict, List, Union
|
3 |
|
4 |
import argilla as rg
|
|
|
6 |
import pandas as pd
|
7 |
from datasets import Dataset
|
8 |
from distilabel.distiset import Distiset
|
9 |
+
from huggingface_hub import HfApi
|
|
|
|
|
|
|
10 |
|
11 |
+
from src.distilabel_dataset_generator.apps.base import (
|
12 |
+
get_argilla_client,
|
13 |
+
get_main_ui,
|
14 |
+
get_pipeline_code_ui,
|
15 |
+
hide_success_message,
|
16 |
+
push_pipeline_code_to_hub,
|
17 |
+
show_success_message_argilla,
|
18 |
+
show_success_message_hub,
|
19 |
+
validate_argilla_user_workspace_dataset,
|
20 |
+
)
|
21 |
+
from src.distilabel_dataset_generator.apps.base import (
|
22 |
+
push_dataset_to_hub as push_to_hub_base,
|
23 |
+
)
|
24 |
+
from src.distilabel_dataset_generator.pipelines.base import (
|
25 |
+
DEFAULT_BATCH_SIZE,
|
26 |
+
)
|
27 |
from src.distilabel_dataset_generator.pipelines.embeddings import (
|
28 |
get_embeddings,
|
29 |
get_sentence_embedding_dimensions,
|
30 |
)
|
31 |
from src.distilabel_dataset_generator.pipelines.sft import (
|
|
|
32 |
DEFAULT_DATASET_DESCRIPTIONS,
|
33 |
DEFAULT_DATASETS,
|
34 |
DEFAULT_SYSTEM_PROMPTS,
|
|
|
38 |
get_prompt_generator,
|
39 |
get_response_generator,
|
40 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
TASK = "supervised_fine_tuning"
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
def convert_dataframe_messages(dataframe: pd.DataFrame) -> pd.DataFrame:
|
46 |
+
def convert_to_list_of_dicts(messages: str) -> List[Dict[str, str]]:
|
47 |
+
return ast.literal_eval(
|
48 |
+
messages.replace("'user'}", "'user'},")
|
49 |
+
.replace("'system'}", "'system'},")
|
50 |
+
.replace("'assistant'}", "'assistant'},")
|
|
|
|
|
|
|
|
|
|
|
51 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
if "messages" in dataframe.columns:
|
54 |
+
dataframe["messages"] = dataframe["messages"].apply(
|
55 |
+
lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x
|
|
|
|
|
|
|
|
|
|
|
56 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
return dataframe
|
58 |
|
59 |
|
60 |
+
def push_dataset_to_hub(
|
61 |
dataframe: pd.DataFrame,
|
62 |
private: bool = True,
|
63 |
org_name: str = None,
|
64 |
repo_name: str = None,
|
65 |
+
oauth_token: Union[gr.OAuthToken, None] = None,
|
66 |
progress=gr.Progress(),
|
67 |
+
):
|
68 |
original_dataframe = dataframe.copy(deep=True)
|
69 |
+
dataframe = convert_dataframe_messages(dataframe)
|
70 |
+
try:
|
71 |
+
push_to_hub_base(
|
72 |
+
dataframe, private, org_name, repo_name, oauth_token, progress, task=TASK
|
73 |
)
|
74 |
+
except Exception as e:
|
75 |
+
raise gr.Error(f"Error pushing dataset to the Hub: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
return original_dataframe
|
77 |
|
78 |
|
79 |
+
def push_dataset_to_argilla(
|
80 |
dataframe: pd.DataFrame,
|
81 |
dataset_name: str,
|
82 |
+
oauth_token: Union[gr.OAuthToken, None] = None,
|
83 |
progress=gr.Progress(),
|
84 |
) -> pd.DataFrame:
|
85 |
original_dataframe = dataframe.copy(deep=True)
|
86 |
+
dataframe = convert_dataframe_messages(dataframe)
|
|
|
|
|
|
|
87 |
try:
|
88 |
progress(0.1, desc="Setting up user and workspace")
|
89 |
client = get_argilla_client()
|
|
|
203 |
return original_dataframe
|
204 |
|
205 |
|
206 |
+
def generate_system_prompt(dataset_description, progress=gr.Progress()):
|
207 |
+
progress(0.0, desc="Generating system prompt")
|
208 |
+
if dataset_description in DEFAULT_DATASET_DESCRIPTIONS:
|
209 |
+
index = DEFAULT_DATASET_DESCRIPTIONS.index(dataset_description)
|
210 |
+
if index < len(DEFAULT_SYSTEM_PROMPTS):
|
211 |
+
return DEFAULT_SYSTEM_PROMPTS[index]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
+
progress(0.3, desc="Initializing text generation")
|
214 |
+
generate_description = get_prompt_generator()
|
215 |
+
progress(0.7, desc="Generating system prompt")
|
216 |
+
result = next(
|
217 |
+
generate_description.process(
|
218 |
+
[
|
219 |
+
{
|
220 |
+
"system_prompt": PROMPT_CREATION_PROMPT,
|
221 |
+
"instruction": dataset_description,
|
222 |
+
}
|
223 |
+
]
|
224 |
+
)
|
225 |
+
)[0]["generation"]
|
226 |
+
progress(1.0, desc="System prompt generated")
|
227 |
+
return result
|
228 |
|
|
|
|
|
|
|
229 |
|
230 |
+
def generate_dataset(
|
231 |
+
system_prompt: str,
|
232 |
+
num_turns: int = 1,
|
233 |
+
num_rows: int = 5,
|
234 |
+
is_sample: bool = False,
|
235 |
+
progress=gr.Progress(),
|
236 |
+
) -> pd.DataFrame:
|
237 |
+
progress(0.0, desc="(1/2) Generating instructions")
|
238 |
+
magpie_generator = get_magpie_generator(
|
239 |
+
num_turns, num_rows, system_prompt, is_sample
|
240 |
+
)
|
241 |
+
response_generator = get_response_generator(num_turns, system_prompt, is_sample)
|
242 |
+
total_steps: int = num_rows * 2
|
243 |
+
batch_size = DEFAULT_BATCH_SIZE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
+
# create instructions
|
246 |
+
n_processed = 0
|
247 |
+
magpie_results = []
|
248 |
+
while n_processed < num_rows:
|
249 |
+
progress(
|
250 |
+
0.5 * n_processed / num_rows,
|
251 |
+
total=total_steps,
|
252 |
+
desc="(1/2) Generating instructions",
|
253 |
)
|
254 |
+
remaining_rows = num_rows - n_processed
|
255 |
+
batch_size = min(batch_size, remaining_rows)
|
256 |
+
inputs = [{"system_prompt": system_prompt} for _ in range(batch_size)]
|
257 |
+
batch = list(magpie_generator.process(inputs=inputs))
|
258 |
+
magpie_results.extend(batch[0])
|
259 |
+
n_processed += batch_size
|
260 |
+
progress(0.5, desc="(1/2) Generating instructions")
|
261 |
|
262 |
+
# generate responses
|
263 |
+
n_processed = 0
|
264 |
+
response_results = []
|
265 |
+
if num_turns == 1:
|
266 |
+
while n_processed < num_rows:
|
267 |
+
progress(
|
268 |
+
0.5 + 0.5 * n_processed / num_rows,
|
269 |
+
total=total_steps,
|
270 |
+
desc="(2/2) Generating responses",
|
271 |
)
|
272 |
+
batch = magpie_results[n_processed : n_processed + batch_size]
|
273 |
+
responses = list(response_generator.process(inputs=batch))
|
274 |
+
response_results.extend(responses[0])
|
275 |
+
n_processed += batch_size
|
276 |
+
for result in response_results:
|
277 |
+
result["prompt"] = result["instruction"]
|
278 |
+
result["completion"] = result["generation"]
|
279 |
+
result["system_prompt"] = system_prompt
|
280 |
+
else:
|
281 |
+
for result in magpie_results:
|
282 |
+
result["conversation"].insert(
|
283 |
+
0, {"role": "system", "content": system_prompt}
|
284 |
)
|
285 |
+
result["messages"] = result["conversation"]
|
286 |
+
while n_processed < num_rows:
|
287 |
+
progress(
|
288 |
+
0.5 + 0.5 * n_processed / num_rows,
|
289 |
+
total=total_steps,
|
290 |
+
desc="(2/2) Generating responses",
|
291 |
+
)
|
292 |
+
batch = magpie_results[n_processed : n_processed + batch_size]
|
293 |
+
responses = list(response_generator.process(inputs=batch))
|
294 |
+
response_results.extend(responses[0])
|
295 |
+
n_processed += batch_size
|
296 |
+
for result in response_results:
|
297 |
+
result["messages"].append(
|
298 |
+
{"role": "assistant", "content": result["generation"]}
|
299 |
+
)
|
300 |
+
progress(
|
301 |
+
1,
|
302 |
+
total=total_steps,
|
303 |
+
desc="(2/2) Creating dataset",
|
304 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
+
# create distiset
|
307 |
+
distiset_results = []
|
308 |
+
for result in response_results:
|
309 |
+
record = {}
|
310 |
+
for relevant_keys in [
|
311 |
+
"messages",
|
312 |
+
"prompt",
|
313 |
+
"completion",
|
314 |
+
"model_name",
|
315 |
+
"system_prompt",
|
316 |
+
]:
|
317 |
+
if relevant_keys in result:
|
318 |
+
record[relevant_keys] = result[relevant_keys]
|
319 |
+
distiset_results.append(record)
|
320 |
|
321 |
+
distiset = Distiset(
|
322 |
+
{
|
323 |
+
"default": Dataset.from_list(distiset_results),
|
324 |
+
}
|
325 |
+
)
|
326 |
|
327 |
+
# If not pushing to hub generate the dataset directly
|
328 |
+
distiset = distiset["default"]
|
329 |
+
if num_turns == 1:
|
330 |
+
outputs = distiset.to_pandas()[["system_prompt", "prompt", "completion"]]
|
331 |
+
else:
|
332 |
+
outputs = distiset.to_pandas()[["messages"]]
|
333 |
+
dataframe = pd.DataFrame(outputs)
|
334 |
+
progress(1.0, desc="Dataset generation completed")
|
335 |
+
return dataframe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
+
(
|
339 |
+
app,
|
340 |
+
main_ui,
|
341 |
+
custom_input_ui,
|
342 |
+
dataset_description,
|
343 |
+
examples,
|
344 |
+
btn_generate_system_prompt,
|
345 |
+
system_prompt,
|
346 |
+
sample_dataset,
|
347 |
+
btn_generate_sample_dataset,
|
348 |
+
dataset_name,
|
349 |
+
add_to_existing_dataset,
|
350 |
+
btn_generate_full_dataset_argilla,
|
351 |
+
btn_generate_and_push_to_argilla,
|
352 |
+
btn_push_to_argilla,
|
353 |
+
org_name,
|
354 |
+
repo_name,
|
355 |
+
private,
|
356 |
+
btn_generate_full_dataset,
|
357 |
+
btn_generate_and_push_to_hub,
|
358 |
+
btn_push_to_hub,
|
359 |
+
final_dataset,
|
360 |
+
success_message,
|
361 |
+
) = get_main_ui(
|
362 |
+
default_dataset_descriptions=DEFAULT_DATASET_DESCRIPTIONS,
|
363 |
+
default_system_prompts=DEFAULT_SYSTEM_PROMPTS,
|
364 |
+
default_datasets=DEFAULT_DATASETS,
|
365 |
+
fn_generate_system_prompt=generate_system_prompt,
|
366 |
+
fn_generate_dataset=generate_dataset,
|
367 |
+
task=TASK,
|
368 |
+
)
|
369 |
|
370 |
+
with app:
|
371 |
+
with main_ui:
|
372 |
+
with custom_input_ui:
|
373 |
+
num_turns = gr.Number(
|
374 |
+
value=1,
|
375 |
+
label="Number of turns in the conversation",
|
376 |
+
minimum=1,
|
377 |
+
maximum=4,
|
378 |
+
step=1,
|
379 |
+
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).",
|
380 |
+
)
|
381 |
+
num_rows = gr.Number(
|
382 |
+
value=10,
|
383 |
+
label="Number of rows in the dataset",
|
384 |
+
minimum=1,
|
385 |
+
maximum=500,
|
386 |
+
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
|
387 |
+
)
|
388 |
|
389 |
+
pipeline_code = get_pipeline_code_ui(
|
390 |
+
generate_pipeline_code(system_prompt.value, num_turns.value, num_rows.value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
)
|
392 |
|
393 |
+
# define app triggers
|
|
|
|
|
|
|
|
|
394 |
gr.on(
|
395 |
triggers=[
|
396 |
btn_generate_full_dataset.click,
|
397 |
+
btn_generate_full_dataset_argilla.click,
|
398 |
],
|
399 |
fn=hide_success_message,
|
400 |
outputs=[success_message],
|
|
|
406 |
)
|
407 |
|
408 |
btn_generate_and_push_to_argilla.click(
|
409 |
+
fn=validate_argilla_user_workspace_dataset,
|
410 |
inputs=[dataset_name, final_dataset, add_to_existing_dataset],
|
411 |
outputs=[final_dataset],
|
412 |
show_progress=True,
|
|
|
419 |
outputs=[final_dataset],
|
420 |
show_progress=True,
|
421 |
).success(
|
422 |
+
fn=push_dataset_to_argilla,
|
423 |
inputs=[final_dataset, dataset_name],
|
424 |
outputs=[final_dataset],
|
425 |
show_progress=True,
|
|
|
438 |
outputs=[final_dataset],
|
439 |
show_progress=True,
|
440 |
).then(
|
441 |
+
fn=push_dataset_to_hub,
|
442 |
inputs=[final_dataset, private, org_name, repo_name],
|
443 |
outputs=[final_dataset],
|
444 |
show_progress=True,
|
445 |
).then(
|
446 |
+
fn=push_pipeline_code_to_hub,
|
447 |
inputs=[pipeline_code, org_name, repo_name],
|
448 |
outputs=[],
|
449 |
show_progress=True,
|
|
|
457 |
fn=hide_success_message,
|
458 |
outputs=[success_message],
|
459 |
).then(
|
460 |
+
fn=push_dataset_to_hub,
|
461 |
inputs=[final_dataset, private, org_name, repo_name],
|
462 |
outputs=[final_dataset],
|
463 |
show_progress=True,
|
464 |
).then(
|
465 |
+
fn=push_pipeline_code_to_hub,
|
466 |
inputs=[pipeline_code, org_name, repo_name],
|
467 |
outputs=[],
|
468 |
show_progress=True,
|
|
|
476 |
fn=hide_success_message,
|
477 |
outputs=[success_message],
|
478 |
).success(
|
479 |
+
fn=validate_argilla_user_workspace_dataset,
|
480 |
inputs=[dataset_name, final_dataset, add_to_existing_dataset],
|
481 |
outputs=[final_dataset],
|
482 |
show_progress=True,
|
483 |
).success(
|
484 |
+
fn=push_dataset_to_argilla,
|
485 |
inputs=[final_dataset, dataset_name],
|
486 |
outputs=[final_dataset],
|
487 |
show_progress=True,
|
|
|
506 |
inputs=[system_prompt, num_turns, num_rows],
|
507 |
outputs=[pipeline_code],
|
508 |
)
|
|
|
|
@@ -0,0 +1,548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import List, Union
|
3 |
+
|
4 |
+
import argilla as rg
|
5 |
+
import gradio as gr
|
6 |
+
import pandas as pd
|
7 |
+
from datasets import Dataset
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
|
10 |
+
from src.distilabel_dataset_generator.apps.base import (
|
11 |
+
get_argilla_client,
|
12 |
+
get_main_ui,
|
13 |
+
get_pipeline_code_ui,
|
14 |
+
hide_success_message,
|
15 |
+
push_pipeline_code_to_hub,
|
16 |
+
show_success_message_argilla,
|
17 |
+
show_success_message_hub,
|
18 |
+
validate_argilla_user_workspace_dataset,
|
19 |
+
)
|
20 |
+
from src.distilabel_dataset_generator.apps.base import (
|
21 |
+
push_dataset_to_hub as push_to_hub_base,
|
22 |
+
)
|
23 |
+
from src.distilabel_dataset_generator.pipelines.base import (
|
24 |
+
DEFAULT_BATCH_SIZE,
|
25 |
+
)
|
26 |
+
from src.distilabel_dataset_generator.pipelines.embeddings import (
|
27 |
+
get_embeddings,
|
28 |
+
get_sentence_embedding_dimensions,
|
29 |
+
)
|
30 |
+
from src.distilabel_dataset_generator.pipelines.textcat import (
|
31 |
+
DEFAULT_DATASET_DESCRIPTIONS,
|
32 |
+
DEFAULT_DATASETS,
|
33 |
+
DEFAULT_SYSTEM_PROMPTS,
|
34 |
+
PROMPT_CREATION_PROMPT,
|
35 |
+
generate_pipeline_code,
|
36 |
+
get_labeller_generator,
|
37 |
+
get_prompt_generator,
|
38 |
+
get_textcat_generator,
|
39 |
+
)
|
40 |
+
from src.distilabel_dataset_generator.utils import get_preprocess_labels
|
41 |
+
|
42 |
+
TASK = "text_classification"
|
43 |
+
|
44 |
+
|
45 |
+
def push_dataset_to_hub(
|
46 |
+
dataframe: pd.DataFrame,
|
47 |
+
private: bool = True,
|
48 |
+
org_name: str = None,
|
49 |
+
repo_name: str = None,
|
50 |
+
oauth_token: Union[gr.OAuthToken, None] = None,
|
51 |
+
progress=gr.Progress(),
|
52 |
+
labels: List[str] = None,
|
53 |
+
num_labels: int = 1,
|
54 |
+
):
|
55 |
+
original_dataframe = dataframe.copy(deep=True)
|
56 |
+
labels = get_preprocess_labels(labels)
|
57 |
+
try:
|
58 |
+
push_to_hub_base(
|
59 |
+
dataframe,
|
60 |
+
private,
|
61 |
+
org_name,
|
62 |
+
repo_name,
|
63 |
+
oauth_token,
|
64 |
+
progress,
|
65 |
+
labels,
|
66 |
+
num_labels,
|
67 |
+
task=TASK,
|
68 |
+
)
|
69 |
+
except Exception as e:
|
70 |
+
raise gr.Error(f"Error pushing dataset to the Hub: {e}")
|
71 |
+
return original_dataframe
|
72 |
+
|
73 |
+
|
74 |
+
def push_dataset_to_argilla(
|
75 |
+
dataframe: pd.DataFrame,
|
76 |
+
dataset_name: str,
|
77 |
+
oauth_token: Union[gr.OAuthToken, None] = None,
|
78 |
+
progress=gr.Progress(),
|
79 |
+
num_labels: int = 1,
|
80 |
+
labels: List[str] = None,
|
81 |
+
) -> pd.DataFrame:
|
82 |
+
original_dataframe = dataframe.copy(deep=True)
|
83 |
+
try:
|
84 |
+
progress(0.1, desc="Setting up user and workspace")
|
85 |
+
client = get_argilla_client()
|
86 |
+
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
|
87 |
+
labels = get_preprocess_labels(labels)
|
88 |
+
settings = rg.Settings(
|
89 |
+
fields=[
|
90 |
+
rg.TextField(
|
91 |
+
name="text",
|
92 |
+
description="The text classification data",
|
93 |
+
title="Text",
|
94 |
+
),
|
95 |
+
],
|
96 |
+
questions=[
|
97 |
+
(
|
98 |
+
rg.LabelQuestion(
|
99 |
+
name="label",
|
100 |
+
title="Label",
|
101 |
+
description="The label of the text",
|
102 |
+
labels=labels,
|
103 |
+
)
|
104 |
+
if num_labels == 1
|
105 |
+
else rg.MultiLabelQuestion(
|
106 |
+
name="labels",
|
107 |
+
title="Labels",
|
108 |
+
description="The labels of the conversation",
|
109 |
+
labels=labels,
|
110 |
+
)
|
111 |
+
),
|
112 |
+
],
|
113 |
+
metadata=[
|
114 |
+
rg.IntegerMetadataProperty(name="text_length", title="Text Length"),
|
115 |
+
],
|
116 |
+
vectors=[
|
117 |
+
rg.VectorField(
|
118 |
+
name="text_embeddings",
|
119 |
+
dimensions=get_sentence_embedding_dimensions(),
|
120 |
+
)
|
121 |
+
],
|
122 |
+
guidelines="Please review the text and provide or correct the label where needed.",
|
123 |
+
)
|
124 |
+
|
125 |
+
dataframe["text_length"] = dataframe["text"].apply(len)
|
126 |
+
dataframe["text_embeddings"] = get_embeddings(dataframe["text"])
|
127 |
+
|
128 |
+
progress(0.5, desc="Creating dataset")
|
129 |
+
rg_dataset = client.datasets(name=dataset_name, workspace=hf_user)
|
130 |
+
if rg_dataset is None:
|
131 |
+
rg_dataset = rg.Dataset(
|
132 |
+
name=dataset_name,
|
133 |
+
workspace=hf_user,
|
134 |
+
settings=settings,
|
135 |
+
client=client,
|
136 |
+
)
|
137 |
+
rg_dataset = rg_dataset.create()
|
138 |
+
progress(0.7, desc="Pushing dataset to Argilla")
|
139 |
+
hf_dataset = Dataset.from_pandas(dataframe)
|
140 |
+
records = [
|
141 |
+
rg.Record(
|
142 |
+
fields={
|
143 |
+
"text": sample["text"],
|
144 |
+
},
|
145 |
+
metadata={"text_length": sample["text_length"]},
|
146 |
+
vectors={"text_embeddings": sample["text_embeddings"]},
|
147 |
+
suggestions=(
|
148 |
+
[
|
149 |
+
rg.Suggestion(
|
150 |
+
question_name="label" if num_labels == 1 else "labels",
|
151 |
+
value=(
|
152 |
+
sample["label"] if num_labels == 1 else sample["labels"]
|
153 |
+
),
|
154 |
+
)
|
155 |
+
]
|
156 |
+
if (
|
157 |
+
(num_labels == 1 and sample["label"] in labels)
|
158 |
+
or (
|
159 |
+
num_labels > 1
|
160 |
+
and all(label in labels for label in sample["labels"])
|
161 |
+
)
|
162 |
+
)
|
163 |
+
else []
|
164 |
+
),
|
165 |
+
)
|
166 |
+
for sample in hf_dataset
|
167 |
+
]
|
168 |
+
rg_dataset.records.log(records=records)
|
169 |
+
progress(1.0, desc="Dataset pushed to Argilla")
|
170 |
+
except Exception as e:
|
171 |
+
raise gr.Error(f"Error pushing dataset to Argilla: {e}")
|
172 |
+
return original_dataframe
|
173 |
+
|
174 |
+
|
175 |
+
def generate_system_prompt(dataset_description, progress=gr.Progress()):
|
176 |
+
progress(0.0, desc="Generating text classification task")
|
177 |
+
if dataset_description in DEFAULT_DATASET_DESCRIPTIONS:
|
178 |
+
index = DEFAULT_DATASET_DESCRIPTIONS.index(dataset_description)
|
179 |
+
if index < len(DEFAULT_SYSTEM_PROMPTS):
|
180 |
+
return DEFAULT_SYSTEM_PROMPTS[index]
|
181 |
+
|
182 |
+
progress(0.3, desc="Initializing text generation")
|
183 |
+
generate_description = get_prompt_generator()
|
184 |
+
progress(0.7, desc="Generating text classification task")
|
185 |
+
result = next(
|
186 |
+
generate_description.process(
|
187 |
+
[
|
188 |
+
{
|
189 |
+
"system_prompt": PROMPT_CREATION_PROMPT,
|
190 |
+
"instruction": dataset_description,
|
191 |
+
}
|
192 |
+
]
|
193 |
+
)
|
194 |
+
)[0]["generation"]
|
195 |
+
progress(1.0, desc="Text classification task generated")
|
196 |
+
return result
|
197 |
+
|
198 |
+
|
199 |
+
def generate_dataset(
|
200 |
+
system_prompt: str,
|
201 |
+
difficulty: str,
|
202 |
+
clarity: str,
|
203 |
+
labels: List[str] = None,
|
204 |
+
num_labels: int = 1,
|
205 |
+
num_rows: int = 10,
|
206 |
+
is_sample: bool = False,
|
207 |
+
progress=gr.Progress(),
|
208 |
+
) -> pd.DataFrame:
|
209 |
+
progress(0.0, desc="(1/2) Generating text classification data")
|
210 |
+
labels = get_preprocess_labels(labels)
|
211 |
+
textcat_generator = get_textcat_generator(
|
212 |
+
difficulty=difficulty, clarity=clarity, is_sample=is_sample
|
213 |
+
)
|
214 |
+
labeller_generator = get_labeller_generator(
|
215 |
+
system_prompt=system_prompt,
|
216 |
+
labels=labels,
|
217 |
+
num_labels=num_labels,
|
218 |
+
is_sample=is_sample,
|
219 |
+
)
|
220 |
+
total_steps: int = num_rows * 2
|
221 |
+
batch_size = DEFAULT_BATCH_SIZE
|
222 |
+
|
223 |
+
# create text classification data
|
224 |
+
n_processed = 0
|
225 |
+
textcat_results = []
|
226 |
+
while n_processed < num_rows:
|
227 |
+
progress(
|
228 |
+
0.5 * n_processed / num_rows,
|
229 |
+
total=total_steps,
|
230 |
+
desc="(1/2) Generating text classification data",
|
231 |
+
)
|
232 |
+
remaining_rows = num_rows - n_processed
|
233 |
+
batch_size = min(batch_size, remaining_rows)
|
234 |
+
inputs = [{"task": system_prompt} for _ in range(batch_size)]
|
235 |
+
batch = list(textcat_generator.process(inputs=inputs))
|
236 |
+
textcat_results.extend(batch[0])
|
237 |
+
n_processed += batch_size
|
238 |
+
for result in textcat_results:
|
239 |
+
result["text"] = result["input_text"]
|
240 |
+
|
241 |
+
# label text classification data
|
242 |
+
progress(0.5, desc="(1/2) Generating text classification data")
|
243 |
+
if not is_sample:
|
244 |
+
n_processed = 0
|
245 |
+
labeller_results = []
|
246 |
+
while n_processed < num_rows:
|
247 |
+
progress(
|
248 |
+
0.5 + 0.5 * n_processed / num_rows,
|
249 |
+
total=total_steps,
|
250 |
+
desc="(1/2) Labeling text classification data",
|
251 |
+
)
|
252 |
+
batch = textcat_results[n_processed : n_processed + batch_size]
|
253 |
+
labels_batch = list(labeller_generator.process(inputs=batch))
|
254 |
+
labeller_results.extend(labels_batch[0])
|
255 |
+
n_processed += batch_size
|
256 |
+
progress(
|
257 |
+
1,
|
258 |
+
total=total_steps,
|
259 |
+
desc="(2/2) Creating dataset",
|
260 |
+
)
|
261 |
+
|
262 |
+
# create final dataset
|
263 |
+
distiset_results = []
|
264 |
+
source_results = textcat_results if is_sample else labeller_results
|
265 |
+
for result in source_results:
|
266 |
+
record = {
|
267 |
+
key: result[key]
|
268 |
+
for key in ["text", "label" if is_sample else "labels"]
|
269 |
+
if key in result
|
270 |
+
}
|
271 |
+
distiset_results.append(record)
|
272 |
+
|
273 |
+
dataframe = pd.DataFrame(distiset_results)
|
274 |
+
if not is_sample:
|
275 |
+
if num_labels == 1:
|
276 |
+
dataframe = dataframe.rename(columns={"labels": "label"})
|
277 |
+
dataframe["label"] = dataframe["label"].apply(
|
278 |
+
lambda x: x.lower().strip() if x.lower().strip() in labels else None
|
279 |
+
)
|
280 |
+
else:
|
281 |
+
dataframe["labels"] = dataframe["labels"].apply(
|
282 |
+
lambda x: (
|
283 |
+
[
|
284 |
+
label.lower().strip()
|
285 |
+
for label in x
|
286 |
+
if label.lower().strip() in labels
|
287 |
+
]
|
288 |
+
if isinstance(x, list)
|
289 |
+
else None
|
290 |
+
)
|
291 |
+
)
|
292 |
+
progress(1.0, desc="Dataset generation completed")
|
293 |
+
return dataframe
|
294 |
+
|
295 |
+
|
296 |
+
def update_suggested_labels(system_prompt):
|
297 |
+
new_labels = re.findall(r"'(\b[\w-]+\b)'", system_prompt)
|
298 |
+
if not new_labels:
|
299 |
+
return gr.Warning(
|
300 |
+
"No labels found in the system prompt. Please add labels manually."
|
301 |
+
)
|
302 |
+
return gr.update(choices=new_labels, value=new_labels)
|
303 |
+
|
304 |
+
|
305 |
+
def validate_input_labels(labels):
|
306 |
+
if not labels or len(labels) < 2:
|
307 |
+
raise gr.Error(
|
308 |
+
f"Please select at least 2 labels to classify your text. You selected {len(labels) if labels else 0}."
|
309 |
+
)
|
310 |
+
return labels
|
311 |
+
|
312 |
+
|
313 |
+
(
|
314 |
+
app,
|
315 |
+
main_ui,
|
316 |
+
custom_input_ui,
|
317 |
+
dataset_description,
|
318 |
+
examples,
|
319 |
+
btn_generate_system_prompt,
|
320 |
+
system_prompt,
|
321 |
+
sample_dataset,
|
322 |
+
btn_generate_sample_dataset,
|
323 |
+
dataset_name,
|
324 |
+
add_to_existing_dataset,
|
325 |
+
btn_generate_full_dataset_argilla,
|
326 |
+
btn_generate_and_push_to_argilla,
|
327 |
+
btn_push_to_argilla,
|
328 |
+
org_name,
|
329 |
+
repo_name,
|
330 |
+
private,
|
331 |
+
btn_generate_full_dataset,
|
332 |
+
btn_generate_and_push_to_hub,
|
333 |
+
btn_push_to_hub,
|
334 |
+
final_dataset,
|
335 |
+
success_message,
|
336 |
+
) = get_main_ui(
|
337 |
+
default_dataset_descriptions=DEFAULT_DATASET_DESCRIPTIONS,
|
338 |
+
default_system_prompts=DEFAULT_SYSTEM_PROMPTS,
|
339 |
+
default_datasets=DEFAULT_DATASETS,
|
340 |
+
fn_generate_system_prompt=generate_system_prompt,
|
341 |
+
fn_generate_dataset=generate_dataset,
|
342 |
+
task=TASK,
|
343 |
+
)
|
344 |
+
|
345 |
+
with app:
|
346 |
+
with main_ui:
|
347 |
+
with custom_input_ui:
|
348 |
+
difficulty = gr.Dropdown(
|
349 |
+
choices=[
|
350 |
+
("High School", "high school"),
|
351 |
+
("College", "college"),
|
352 |
+
("PhD", "PhD"),
|
353 |
+
("Mixed", "mixed"),
|
354 |
+
],
|
355 |
+
value="mixed",
|
356 |
+
label="Difficulty",
|
357 |
+
info="The difficulty of the text to be generated.",
|
358 |
+
)
|
359 |
+
clarity = gr.Dropdown(
|
360 |
+
choices=[
|
361 |
+
("Clear", "clear"),
|
362 |
+
(
|
363 |
+
"Understandable",
|
364 |
+
"understandable with some effort",
|
365 |
+
),
|
366 |
+
("Ambiguous", "ambiguous"),
|
367 |
+
("Mixed", "mixed"),
|
368 |
+
],
|
369 |
+
value="mixed",
|
370 |
+
label="Clarity",
|
371 |
+
info="The clarity of the text to be generated.",
|
372 |
+
)
|
373 |
+
with gr.Column():
|
374 |
+
labels = gr.Dropdown(
|
375 |
+
choices=[],
|
376 |
+
allow_custom_value=True,
|
377 |
+
interactive=True,
|
378 |
+
label="Labels",
|
379 |
+
multiselect=True,
|
380 |
+
info="Add the labels to classify the text.",
|
381 |
+
)
|
382 |
+
with gr.Blocks():
|
383 |
+
btn_suggested_labels = gr.Button(
|
384 |
+
value="Add suggested labels",
|
385 |
+
size="sm",
|
386 |
+
)
|
387 |
+
num_labels = gr.Number(
|
388 |
+
label="Number of labels",
|
389 |
+
value=1,
|
390 |
+
minimum=1,
|
391 |
+
maximum=10,
|
392 |
+
info="The number of labels to classify the text.",
|
393 |
+
)
|
394 |
+
num_rows = gr.Number(
|
395 |
+
label="Number of rows",
|
396 |
+
value=10,
|
397 |
+
minimum=1,
|
398 |
+
maximum=500,
|
399 |
+
info="More rows will take longer to generate.",
|
400 |
+
)
|
401 |
+
|
402 |
+
pipeline_code = get_pipeline_code_ui(
|
403 |
+
generate_pipeline_code(
|
404 |
+
system_prompt.value,
|
405 |
+
difficulty=difficulty.value,
|
406 |
+
clarity=clarity.value,
|
407 |
+
labels=labels.value,
|
408 |
+
num_labels=num_labels.value,
|
409 |
+
num_rows=num_rows.value,
|
410 |
+
)
|
411 |
+
)
|
412 |
+
|
413 |
+
# define app triggers
|
414 |
+
btn_suggested_labels.click(
|
415 |
+
fn=update_suggested_labels,
|
416 |
+
inputs=[system_prompt],
|
417 |
+
outputs=labels,
|
418 |
+
)
|
419 |
+
|
420 |
+
gr.on(
|
421 |
+
triggers=[
|
422 |
+
btn_generate_full_dataset.click,
|
423 |
+
btn_generate_full_dataset_argilla.click,
|
424 |
+
],
|
425 |
+
fn=hide_success_message,
|
426 |
+
outputs=[success_message],
|
427 |
+
).then(
|
428 |
+
fn=validate_input_labels,
|
429 |
+
inputs=[labels],
|
430 |
+
outputs=[labels],
|
431 |
+
).success(
|
432 |
+
fn=generate_dataset,
|
433 |
+
inputs=[system_prompt, difficulty, clarity, labels, num_labels, num_rows],
|
434 |
+
outputs=[final_dataset],
|
435 |
+
show_progress=True,
|
436 |
+
)
|
437 |
+
|
438 |
+
btn_generate_and_push_to_argilla.click(
|
439 |
+
fn=validate_argilla_user_workspace_dataset,
|
440 |
+
inputs=[dataset_name, final_dataset, add_to_existing_dataset],
|
441 |
+
outputs=[final_dataset],
|
442 |
+
show_progress=True,
|
443 |
+
).success(
|
444 |
+
fn=hide_success_message,
|
445 |
+
outputs=[success_message],
|
446 |
+
).success(
|
447 |
+
fn=generate_dataset,
|
448 |
+
inputs=[system_prompt, difficulty, clarity, labels, num_labels, num_rows],
|
449 |
+
outputs=[final_dataset],
|
450 |
+
show_progress=True,
|
451 |
+
).success(
|
452 |
+
fn=push_dataset_to_argilla,
|
453 |
+
inputs=[final_dataset, dataset_name, num_labels, labels],
|
454 |
+
outputs=[final_dataset],
|
455 |
+
show_progress=True,
|
456 |
+
).success(
|
457 |
+
fn=show_success_message_argilla,
|
458 |
+
inputs=[],
|
459 |
+
outputs=[success_message],
|
460 |
+
)
|
461 |
+
|
462 |
+
btn_generate_and_push_to_hub.click(
|
463 |
+
fn=hide_success_message,
|
464 |
+
outputs=[success_message],
|
465 |
+
).then(
|
466 |
+
fn=generate_dataset,
|
467 |
+
inputs=[system_prompt, difficulty, clarity, labels, num_labels, num_rows],
|
468 |
+
outputs=[final_dataset],
|
469 |
+
show_progress=True,
|
470 |
+
).then(
|
471 |
+
fn=push_dataset_to_hub,
|
472 |
+
inputs=[final_dataset, private, org_name, repo_name, labels, num_labels],
|
473 |
+
outputs=[final_dataset],
|
474 |
+
show_progress=True,
|
475 |
+
).then(
|
476 |
+
fn=push_pipeline_code_to_hub,
|
477 |
+
inputs=[pipeline_code, org_name, repo_name],
|
478 |
+
outputs=[],
|
479 |
+
show_progress=True,
|
480 |
+
).success(
|
481 |
+
fn=show_success_message_hub,
|
482 |
+
inputs=[org_name, repo_name],
|
483 |
+
outputs=[success_message],
|
484 |
+
)
|
485 |
+
|
486 |
+
btn_push_to_hub.click(
|
487 |
+
fn=hide_success_message,
|
488 |
+
outputs=[success_message],
|
489 |
+
).then(
|
490 |
+
fn=push_dataset_to_hub,
|
491 |
+
inputs=[final_dataset, private, org_name, repo_name, labels, num_labels],
|
492 |
+
outputs=[final_dataset],
|
493 |
+
show_progress=True,
|
494 |
+
).then(
|
495 |
+
fn=push_pipeline_code_to_hub,
|
496 |
+
inputs=[pipeline_code, org_name, repo_name],
|
497 |
+
outputs=[],
|
498 |
+
show_progress=True,
|
499 |
+
).success(
|
500 |
+
fn=show_success_message_hub,
|
501 |
+
inputs=[org_name, repo_name],
|
502 |
+
outputs=[success_message],
|
503 |
+
)
|
504 |
+
|
505 |
+
btn_push_to_argilla.click(
|
506 |
+
fn=hide_success_message,
|
507 |
+
outputs=[success_message],
|
508 |
+
).success(
|
509 |
+
fn=validate_argilla_user_workspace_dataset,
|
510 |
+
inputs=[dataset_name, final_dataset, add_to_existing_dataset],
|
511 |
+
outputs=[final_dataset],
|
512 |
+
show_progress=True,
|
513 |
+
).success(
|
514 |
+
fn=push_dataset_to_argilla,
|
515 |
+
inputs=[final_dataset, dataset_name, num_labels, labels],
|
516 |
+
outputs=[final_dataset],
|
517 |
+
show_progress=True,
|
518 |
+
).success(
|
519 |
+
fn=show_success_message_argilla,
|
520 |
+
inputs=[],
|
521 |
+
outputs=[success_message],
|
522 |
+
)
|
523 |
+
|
524 |
+
system_prompt.change(
|
525 |
+
fn=generate_pipeline_code,
|
526 |
+
inputs=[system_prompt, difficulty, clarity, labels, num_labels, num_rows],
|
527 |
+
outputs=[pipeline_code],
|
528 |
+
)
|
529 |
+
difficulty.change(
|
530 |
+
fn=generate_pipeline_code,
|
531 |
+
inputs=[system_prompt, difficulty, clarity, labels, num_labels, num_rows],
|
532 |
+
outputs=[pipeline_code],
|
533 |
+
)
|
534 |
+
clarity.change(
|
535 |
+
fn=generate_pipeline_code,
|
536 |
+
inputs=[system_prompt, difficulty, clarity, labels, num_labels, num_rows],
|
537 |
+
outputs=[pipeline_code],
|
538 |
+
)
|
539 |
+
labels.change(
|
540 |
+
fn=generate_pipeline_code,
|
541 |
+
inputs=[system_prompt, difficulty, clarity, labels, num_labels, num_rows],
|
542 |
+
outputs=[pipeline_code],
|
543 |
+
)
|
544 |
+
num_labels.change(
|
545 |
+
fn=generate_pipeline_code,
|
546 |
+
inputs=[system_prompt, difficulty, clarity, labels, num_labels, num_rows],
|
547 |
+
outputs=[pipeline_code],
|
548 |
+
)
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from src.distilabel_dataset_generator.utils import HF_TOKENS
|
2 |
+
|
3 |
+
DEFAULT_BATCH_SIZE = 5
|
4 |
+
TOKEN_INDEX = 0
|
5 |
+
MODEL = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
6 |
+
|
7 |
+
|
8 |
+
def _get_next_api_key():
|
9 |
+
global TOKEN_INDEX
|
10 |
+
api_key = HF_TOKENS[TOKEN_INDEX % len(HF_TOKENS)]
|
11 |
+
TOKEN_INDEX += 1
|
12 |
+
return api_key
|
@@ -1,12 +1,11 @@
|
|
1 |
import pandas as pd
|
2 |
-
from datasets import Dataset
|
3 |
-
from distilabel.distiset import Distiset
|
4 |
from distilabel.llms import InferenceEndpointsLLM
|
5 |
-
from distilabel.pipeline import Pipeline
|
6 |
-
from distilabel.steps import KeepColumns
|
7 |
from distilabel.steps.tasks import ChatGeneration, Magpie, TextGeneration
|
8 |
|
9 |
-
from src.distilabel_dataset_generator.
|
|
|
|
|
|
|
10 |
|
11 |
INFORMATION_SEEKING_PROMPT = (
|
12 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
@@ -120,7 +119,6 @@ The prompt you write should follow the same style and structure as the following
|
|
120 |
User dataset description:
|
121 |
"""
|
122 |
|
123 |
-
MODEL = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
124 |
DEFAULT_DATASET_DESCRIPTIONS = (
|
125 |
"rude customer assistant for a phone company",
|
126 |
"assistant that solves math puzzles using python",
|
@@ -157,8 +155,6 @@ _STOP_SEQUENCES = [
|
|
157 |
"assistant",
|
158 |
" \n\n",
|
159 |
]
|
160 |
-
DEFAULT_BATCH_SIZE = 5
|
161 |
-
TOKEN_INDEX = 0
|
162 |
|
163 |
|
164 |
def _get_output_mappings(num_turns):
|
@@ -213,13 +209,6 @@ if __name__ == "__main__":
|
|
213 |
return code
|
214 |
|
215 |
|
216 |
-
def _get_next_api_key():
|
217 |
-
global TOKEN_INDEX
|
218 |
-
api_key = HF_TOKENS[TOKEN_INDEX % len(HF_TOKENS)]
|
219 |
-
TOKEN_INDEX += 1
|
220 |
-
return api_key
|
221 |
-
|
222 |
-
|
223 |
def get_magpie_generator(num_turns, num_rows, system_prompt, is_sample):
|
224 |
input_mappings = _get_output_mappings(num_turns)
|
225 |
output_mappings = input_mappings.copy()
|
@@ -300,12 +289,9 @@ def get_response_generator(num_turns, system_prompt, is_sample):
|
|
300 |
|
301 |
|
302 |
def get_prompt_generator():
|
303 |
-
global TOKEN_INDEX
|
304 |
-
api_key = HF_TOKENS[TOKEN_INDEX % len(HF_TOKENS)]
|
305 |
-
TOKEN_INDEX += 1
|
306 |
prompt_generator = TextGeneration(
|
307 |
llm=InferenceEndpointsLLM(
|
308 |
-
api_key=
|
309 |
model_id=MODEL,
|
310 |
tokenizer_id=MODEL,
|
311 |
generation_kwargs={
|
@@ -318,95 +304,3 @@ def get_prompt_generator():
|
|
318 |
)
|
319 |
prompt_generator.load()
|
320 |
return prompt_generator
|
321 |
-
|
322 |
-
|
323 |
-
def get_pipeline(num_turns, num_rows, system_prompt, is_sample):
|
324 |
-
input_mappings = _get_output_mappings(num_turns)
|
325 |
-
output_mappings = input_mappings
|
326 |
-
|
327 |
-
with Pipeline(name="sft") as pipeline:
|
328 |
-
magpie = get_magpie_generator(num_turns, num_rows, system_prompt, is_sample)
|
329 |
-
generate_response = get_response_generator(system_prompt, is_sample)
|
330 |
-
|
331 |
-
keep_columns = KeepColumns(
|
332 |
-
columns=list(output_mappings.values()) + ["model_name"],
|
333 |
-
)
|
334 |
-
|
335 |
-
magpie.connect(generate_response)
|
336 |
-
generate_response.connect(keep_columns)
|
337 |
-
return pipeline
|
338 |
-
|
339 |
-
|
340 |
-
if __name__ == "__main__":
|
341 |
-
prompt_generation_step = get_prompt_generator()
|
342 |
-
system_prompt = next(
|
343 |
-
prompt_generation_step.process(
|
344 |
-
[
|
345 |
-
{
|
346 |
-
"system_prompt": PROMPT_CREATION_PROMPT,
|
347 |
-
"instruction": DEFAULT_DATASET_DESCRIPTIONS[0],
|
348 |
-
}
|
349 |
-
]
|
350 |
-
)
|
351 |
-
)[0]["generation"]
|
352 |
-
num_rows = 2
|
353 |
-
num_turns = 1
|
354 |
-
magpie_generator = get_magpie_generator(num_turns, num_rows, system_prompt, False)
|
355 |
-
response_generator = get_response_generator(num_turns, system_prompt, False)
|
356 |
-
total_steps = num_rows * 2
|
357 |
-
batch_size = 5 # Adjust this value as needed
|
358 |
-
|
359 |
-
# create instructions
|
360 |
-
magpie_results = []
|
361 |
-
for i in range(0, num_rows, batch_size):
|
362 |
-
batch = list(magpie_generator.process())[:batch_size]
|
363 |
-
magpie_results.extend([item[0] for item in batch])
|
364 |
-
|
365 |
-
# generate responses
|
366 |
-
response_results = []
|
367 |
-
if num_turns == 1:
|
368 |
-
for i in range(0, len(magpie_results), batch_size):
|
369 |
-
batch = magpie_results[i : i + batch_size]
|
370 |
-
batch = [entry[0] for entry in batch]
|
371 |
-
responses = list(response_generator.process(inputs=batch))
|
372 |
-
response_results.extend(responses)
|
373 |
-
for result in response_results:
|
374 |
-
result[0]["prompt"] = result[0]["instruction"]
|
375 |
-
result[0]["completion"] = result[0]["generation"]
|
376 |
-
result[0]["system_prompt"] = system_prompt
|
377 |
-
else:
|
378 |
-
for result in magpie_results:
|
379 |
-
result[0]["conversation"].insert(
|
380 |
-
0, {"role": "system", "content": system_prompt}
|
381 |
-
)
|
382 |
-
result[0]["messages"] = result[0]["conversation"]
|
383 |
-
for i in range(0, len(magpie_results), batch_size):
|
384 |
-
batch = magpie_results[i : i + batch_size]
|
385 |
-
batch = [entry[0] for entry in batch]
|
386 |
-
responses = list(response_generator.process(inputs=batch))
|
387 |
-
response_results.extend(responses)
|
388 |
-
|
389 |
-
for result in response_results:
|
390 |
-
result[0]["messages"].append(
|
391 |
-
{"role": "assistant", "content": result[0]["generation"]}
|
392 |
-
)
|
393 |
-
|
394 |
-
distiset_results = []
|
395 |
-
for result in response_results[0]:
|
396 |
-
record = {}
|
397 |
-
for relevant_keys in [
|
398 |
-
"messages",
|
399 |
-
"prompt",
|
400 |
-
"completion",
|
401 |
-
"model_name",
|
402 |
-
"system_prompt",
|
403 |
-
]:
|
404 |
-
if relevant_keys in result:
|
405 |
-
record[relevant_keys] = result[relevant_keys]
|
406 |
-
distiset_results.append(record)
|
407 |
-
|
408 |
-
distiset = Distiset(
|
409 |
-
{
|
410 |
-
"default": Dataset.from_list(distiset_results),
|
411 |
-
}
|
412 |
-
)
|
|
|
1 |
import pandas as pd
|
|
|
|
|
2 |
from distilabel.llms import InferenceEndpointsLLM
|
|
|
|
|
3 |
from distilabel.steps.tasks import ChatGeneration, Magpie, TextGeneration
|
4 |
|
5 |
+
from src.distilabel_dataset_generator.pipelines.base import (
|
6 |
+
MODEL,
|
7 |
+
_get_next_api_key,
|
8 |
+
)
|
9 |
|
10 |
INFORMATION_SEEKING_PROMPT = (
|
11 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
|
|
119 |
User dataset description:
|
120 |
"""
|
121 |
|
|
|
122 |
DEFAULT_DATASET_DESCRIPTIONS = (
|
123 |
"rude customer assistant for a phone company",
|
124 |
"assistant that solves math puzzles using python",
|
|
|
155 |
"assistant",
|
156 |
" \n\n",
|
157 |
]
|
|
|
|
|
158 |
|
159 |
|
160 |
def _get_output_mappings(num_turns):
|
|
|
209 |
return code
|
210 |
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
def get_magpie_generator(num_turns, num_rows, system_prompt, is_sample):
|
213 |
input_mappings = _get_output_mappings(num_turns)
|
214 |
output_mappings = input_mappings.copy()
|
|
|
289 |
|
290 |
|
291 |
def get_prompt_generator():
|
|
|
|
|
|
|
292 |
prompt_generator = TextGeneration(
|
293 |
llm=InferenceEndpointsLLM(
|
294 |
+
api_key=_get_next_api_key(),
|
295 |
model_id=MODEL,
|
296 |
tokenizer_id=MODEL,
|
297 |
generation_kwargs={
|
|
|
304 |
)
|
305 |
prompt_generator.load()
|
306 |
return prompt_generator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from distilabel.llms import InferenceEndpointsLLM
|
5 |
+
from distilabel.steps.tasks import (
|
6 |
+
GenerateTextClassificationData,
|
7 |
+
TextClassification,
|
8 |
+
TextGeneration,
|
9 |
+
)
|
10 |
+
from src.distilabel_dataset_generator.pipelines.base import (
|
11 |
+
MODEL,
|
12 |
+
_get_next_api_key,
|
13 |
+
)
|
14 |
+
from src.distilabel_dataset_generator.utils import get_preprocess_labels
|
15 |
+
|
16 |
+
PROMPT_CREATION_PROMPT = """You are an AI assistant specialized in generating very precise text classification tasks for dataset creation.
|
17 |
+
|
18 |
+
Your task is to write a prompt following the instruction of the user. Respond with the prompt and nothing else.
|
19 |
+
|
20 |
+
The prompt you write should follow the same style and structure as the following example prompts, clearly specifying the possible classification labels.
|
21 |
+
|
22 |
+
If a label is composed of multiple words, use a hyphen to separate them. For example, 'smartphone-review', 'customer-service', 'product-quality'.:
|
23 |
+
|
24 |
+
Classify the following customer review of a cinema as either 'positive' or 'negative'.
|
25 |
+
|
26 |
+
Classify the following news article into one or more of the following categories: 'politics', 'sports', 'technology', 'entertainment', 'health', 'business', 'environment', 'education', 'science', 'international'.
|
27 |
+
|
28 |
+
Determine the sentiment of the following social media post: 'ambiguous', 'sarcastic', 'informative', 'emotional'.
|
29 |
+
|
30 |
+
Identify the issue category for the following technical support ticket: 'billing', 'technical', 'account', 'shipping', 'returns', 'installation', 'subscription'.
|
31 |
+
|
32 |
+
Classify the following movie review into one of the following categories: 'critical', 'praise', 'disappointed', 'enthusiastic'.
|
33 |
+
|
34 |
+
Determine the level of customer satisfaction from the following customer service transcript: 'satisfied', 'dissatisfied', 'highly-satisfied', 'somewhat-dissatisfied', 'indifferent'.
|
35 |
+
|
36 |
+
Categorize the following product description into one of the following product types: 'smartphone', 'laptop', 'tablet', 'smartwatch', 'e-reader', 'headphones'.
|
37 |
+
|
38 |
+
Classify the following tweet as expressing either 'support' or 'opposition' to the political event discussed.
|
39 |
+
|
40 |
+
Classify the following restaurant review into one of the following categories: 'food-quality', 'service', 'ambiance', or 'price'.
|
41 |
+
|
42 |
+
Classify the following blog post based on its primary fashion trend or style: 'casual', 'formal', 'streetwear', 'vintage' or 'sustainable-fashion'.
|
43 |
+
|
44 |
+
User dataset description:
|
45 |
+
"""
|
46 |
+
|
47 |
+
DEFAULT_DATASET_DESCRIPTIONS = [
|
48 |
+
"A dataset covering customer reviews for an e-commerce website.",
|
49 |
+
"A dataset covering news articles about various topics.",
|
50 |
+
]
|
51 |
+
|
52 |
+
DEFAULT_DATASETS = [
|
53 |
+
pd.DataFrame.from_dict(
|
54 |
+
{
|
55 |
+
"text": [
|
56 |
+
"I love the product! It's amazing and I'll buy it again.",
|
57 |
+
"The product was okay, but I wouldn't buy it again.",
|
58 |
+
],
|
59 |
+
"label": ["positive", "negative"],
|
60 |
+
}
|
61 |
+
),
|
62 |
+
pd.DataFrame.from_dict(
|
63 |
+
{
|
64 |
+
"text": [
|
65 |
+
"Yesterday, the US stock market had a significant increase.",
|
66 |
+
"New research suggests that the Earth is not a perfect sphere.",
|
67 |
+
],
|
68 |
+
"labels": [["economy", "politics"], ["science", "environment"]],
|
69 |
+
}
|
70 |
+
),
|
71 |
+
]
|
72 |
+
|
73 |
+
DEFAULT_SYSTEM_PROMPTS = [
|
74 |
+
"Classify the following customer review as either 'positive' or 'negative'.",
|
75 |
+
"Classify the following news article into one of the following categories: 'politics', 'economy', 'environment', 'science', 'health'.",
|
76 |
+
]
|
77 |
+
|
78 |
+
|
79 |
+
def generate_pipeline_code(
|
80 |
+
system_prompt: str,
|
81 |
+
difficulty: str = None,
|
82 |
+
clarity: str = None,
|
83 |
+
labels: List[str] = None,
|
84 |
+
num_labels: int = 1,
|
85 |
+
num_rows: int = 10,
|
86 |
+
) -> str:
|
87 |
+
labels = get_preprocess_labels(labels)
|
88 |
+
base_code = f"""
|
89 |
+
# Requirements: `pip install distilabel[hf-inference-endpoints]`
|
90 |
+
import os
|
91 |
+
from distilabel.llms import InferenceEndpointsLLM
|
92 |
+
from distilabel.pipeline import Pipeline
|
93 |
+
from distilabel.steps import LoadDataFromDicts, KeepColumns
|
94 |
+
from distilabel.steps.tasks import {"GenerateTextClassificationData" if num_labels == 1 else "GenerateTextClassificationData, TextClassification"}
|
95 |
+
|
96 |
+
MODEL = "{MODEL}"
|
97 |
+
TEXT_CLASSIFICATION_TASK = "{system_prompt}"
|
98 |
+
os.environ["HF_TOKEN"] = (
|
99 |
+
"hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
|
100 |
+
)
|
101 |
+
|
102 |
+
with Pipeline(name="textcat") as pipeline:
|
103 |
+
|
104 |
+
task_generator = LoadDataFromDicts(data=[{{"task": TEXT_CLASSIFICATION_TASK}}])
|
105 |
+
|
106 |
+
textcat_generation = GenerateTextClassificationData(
|
107 |
+
llm=InferenceEndpointsLLM(
|
108 |
+
model_id=MODEL,
|
109 |
+
tokenizer_id=MODEL,
|
110 |
+
api_key=os.environ["HF_TOKEN"],
|
111 |
+
generation_kwargs={{
|
112 |
+
"temperature": 0.8,
|
113 |
+
"max_new_tokens": 2048,
|
114 |
+
}},
|
115 |
+
),
|
116 |
+
difficulty={None if difficulty == "mixed" else repr(difficulty)},
|
117 |
+
clarity={None if clarity == "mixed" else repr(clarity)},
|
118 |
+
num_generations={num_rows},
|
119 |
+
output_mappings={{"input_text": "text"}},
|
120 |
+
)
|
121 |
+
"""
|
122 |
+
|
123 |
+
if num_labels == 1:
|
124 |
+
return (
|
125 |
+
base_code
|
126 |
+
+ """
|
127 |
+
keep_columns = KeepColumns(
|
128 |
+
columns=["text", "label"],
|
129 |
+
)
|
130 |
+
|
131 |
+
# Connect steps in the pipeline
|
132 |
+
task_generator >> textcat_generation >> keep_columns
|
133 |
+
|
134 |
+
if __name__ == "__main__":
|
135 |
+
distiset = pipeline.run()
|
136 |
+
"""
|
137 |
+
)
|
138 |
+
|
139 |
+
return (
|
140 |
+
base_code
|
141 |
+
+ f"""
|
142 |
+
keep_columns = KeepColumns(
|
143 |
+
columns=["text"],
|
144 |
+
)
|
145 |
+
|
146 |
+
textcat_labeller = TextClassification(
|
147 |
+
llm=InferenceEndpointsLLM(
|
148 |
+
model_id=MODEL,
|
149 |
+
tokenizer_id=MODEL,
|
150 |
+
api_key=os.environ["HF_TOKEN"],
|
151 |
+
generation_kwargs={{
|
152 |
+
"temperature": 0.8,
|
153 |
+
"max_new_tokens": 2048,
|
154 |
+
}},
|
155 |
+
),
|
156 |
+
n={num_labels},
|
157 |
+
available_labels={labels},
|
158 |
+
context=TEXT_CLASSIFICATION_TASK,
|
159 |
+
default_label="unknown"
|
160 |
+
)
|
161 |
+
|
162 |
+
# Connect steps in the pipeline
|
163 |
+
task_generator >> textcat_generation >> keep_columns >> textcat_labeller
|
164 |
+
|
165 |
+
if __name__ == "__main__":
|
166 |
+
distiset = pipeline.run()
|
167 |
+
"""
|
168 |
+
)
|
169 |
+
|
170 |
+
|
171 |
+
def get_textcat_generator(difficulty, clarity, is_sample):
|
172 |
+
textcat_generator = GenerateTextClassificationData(
|
173 |
+
llm=InferenceEndpointsLLM(
|
174 |
+
model_id=MODEL,
|
175 |
+
tokenizer_id=MODEL,
|
176 |
+
api_key=_get_next_api_key(),
|
177 |
+
generation_kwargs={
|
178 |
+
"temperature": 0.8,
|
179 |
+
"max_new_tokens": 256 if is_sample else 1024,
|
180 |
+
},
|
181 |
+
),
|
182 |
+
difficulty=None if difficulty == "mixed" else difficulty,
|
183 |
+
clarity=None if clarity == "mixed" else clarity,
|
184 |
+
)
|
185 |
+
textcat_generator.load()
|
186 |
+
return textcat_generator
|
187 |
+
|
188 |
+
|
189 |
+
def get_labeller_generator(system_prompt, labels, num_labels, is_sample):
|
190 |
+
labeller_generator = TextClassification(
|
191 |
+
llm=InferenceEndpointsLLM(
|
192 |
+
model_id=MODEL,
|
193 |
+
tokenizer_id=MODEL,
|
194 |
+
api_key=_get_next_api_key(),
|
195 |
+
generation_kwargs={
|
196 |
+
"temperature": 0.8,
|
197 |
+
"max_new_tokens": 256 if is_sample else 1024,
|
198 |
+
},
|
199 |
+
),
|
200 |
+
context=system_prompt,
|
201 |
+
available_labels=labels,
|
202 |
+
n=num_labels,
|
203 |
+
default_label="unknown",
|
204 |
+
)
|
205 |
+
labeller_generator.load()
|
206 |
+
return labeller_generator
|
207 |
+
|
208 |
+
|
209 |
+
def get_prompt_generator():
|
210 |
+
prompt_generator = TextGeneration(
|
211 |
+
llm=InferenceEndpointsLLM(
|
212 |
+
api_key=_get_next_api_key(),
|
213 |
+
model_id=MODEL,
|
214 |
+
tokenizer_id=MODEL,
|
215 |
+
generation_kwargs={
|
216 |
+
"temperature": 0.8,
|
217 |
+
"max_new_tokens": 2048,
|
218 |
+
"do_sample": True,
|
219 |
+
},
|
220 |
+
),
|
221 |
+
use_system_prompt=True,
|
222 |
+
)
|
223 |
+
prompt_generator.load()
|
224 |
+
return prompt_generator
|
@@ -1,5 +1,5 @@
|
|
1 |
import os
|
2 |
-
from typing import Union
|
3 |
|
4 |
import argilla as rg
|
5 |
import gradio as gr
|
@@ -12,6 +12,8 @@ from gradio.oauth import (
|
|
12 |
)
|
13 |
from huggingface_hub import whoami
|
14 |
|
|
|
|
|
15 |
HF_TOKENS = [os.getenv("HF_TOKEN")] + [os.getenv(f"HF_TOKEN_{i}") for i in range(1, 10)]
|
16 |
HF_TOKENS = [token for token in HF_TOKENS if token]
|
17 |
|
@@ -78,13 +80,35 @@ def get_token(oauth_token: OAuthToken = None):
|
|
78 |
return ""
|
79 |
|
80 |
|
81 |
-
def swap_visibilty(oauth_token: OAuthToken = None):
|
82 |
if oauth_token:
|
83 |
return gr.update(elem_classes=["main_ui_logged_in"])
|
84 |
else:
|
85 |
return gr.update(elem_classes=["main_ui_logged_out"])
|
86 |
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
def get_argilla_client() -> Union[rg.Argilla, None]:
|
89 |
try:
|
90 |
api_url = os.getenv("ARGILLA_API_URL_SDG_REVIEWER")
|
@@ -98,3 +122,6 @@ def get_argilla_client() -> Union[rg.Argilla, None]:
|
|
98 |
)
|
99 |
except Exception:
|
100 |
return None
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from typing import Union, List, Optional
|
3 |
|
4 |
import argilla as rg
|
5 |
import gradio as gr
|
|
|
12 |
)
|
13 |
from huggingface_hub import whoami
|
14 |
|
15 |
+
_LOGGED_OUT_CSS = ".main_ui_logged_out{opacity: 0.3; pointer-events: none}"
|
16 |
+
|
17 |
HF_TOKENS = [os.getenv("HF_TOKEN")] + [os.getenv(f"HF_TOKEN_{i}") for i in range(1, 10)]
|
18 |
HF_TOKENS = [token for token in HF_TOKENS if token]
|
19 |
|
|
|
80 |
return ""
|
81 |
|
82 |
|
83 |
+
def swap_visibilty(oauth_token: Optional[OAuthToken] = None):
|
84 |
if oauth_token:
|
85 |
return gr.update(elem_classes=["main_ui_logged_in"])
|
86 |
else:
|
87 |
return gr.update(elem_classes=["main_ui_logged_out"])
|
88 |
|
89 |
|
90 |
+
def get_base_app():
|
91 |
+
with gr.Blocks(
|
92 |
+
title="🧬 Synthetic Data Generator",
|
93 |
+
head="🧬 Synthetic Data Generator",
|
94 |
+
css=_LOGGED_OUT_CSS,
|
95 |
+
) as app:
|
96 |
+
with gr.Row():
|
97 |
+
gr.Markdown(
|
98 |
+
"Want to run this locally or with other LLMs? Take a look at the FAQ tab. distilabel Synthetic Data Generator is free, we use the authentication token to push the dataset to the Hugging Face Hub and not for data generation."
|
99 |
+
)
|
100 |
+
with gr.Row():
|
101 |
+
gr.Column()
|
102 |
+
get_login_button()
|
103 |
+
gr.Column()
|
104 |
+
|
105 |
+
gr.Markdown("## Iterate on a sample dataset")
|
106 |
+
with gr.Column() as main_ui:
|
107 |
+
pass
|
108 |
+
|
109 |
+
return app
|
110 |
+
|
111 |
+
|
112 |
def get_argilla_client() -> Union[rg.Argilla, None]:
|
113 |
try:
|
114 |
api_url = os.getenv("ARGILLA_API_URL_SDG_REVIEWER")
|
|
|
122 |
)
|
123 |
except Exception:
|
124 |
return None
|
125 |
+
|
126 |
+
def get_preprocess_labels(labels: Optional[List[str]]) -> List[str]:
|
127 |
+
return [label.lower().strip() for label in labels] if labels else []
|