import ast import io from typing import Dict, List, Union import argilla as rg import gradio as gr import pandas as pd from datasets import Dataset from distilabel.distiset import Distiset from distilabel.steps.tasks.text_generation import TextGeneration from gradio.oauth import OAuthToken from huggingface_hub import upload_file from huggingface_hub.hf_api import HfApi from src.distilabel_dataset_generator.pipelines.embeddings import ( get_embeddings, get_sentence_embedding_dimensions, ) from src.distilabel_dataset_generator.pipelines.sft import ( DEFAULT_BATCH_SIZE, DEFAULT_DATASET_DESCRIPTIONS, DEFAULT_DATASETS, DEFAULT_SYSTEM_PROMPTS, PROMPT_CREATION_PROMPT, generate_pipeline_code, get_magpie_generator, get_prompt_generator, get_response_generator, ) from src.distilabel_dataset_generator.utils import ( get_argilla_client, get_login_button, get_org_dropdown, swap_visibilty, ) def convert_to_list_of_dicts(messages: str) -> List[Dict[str, str]]: return ast.literal_eval( messages.replace("'user'}", "'user'},") .replace("'system'}", "'system'},") .replace("'assistant'}", "'assistant'},") ) def generate_system_prompt(dataset_description, progress=gr.Progress()): progress(0.0, desc="Generating system prompt") if dataset_description in DEFAULT_DATASET_DESCRIPTIONS: index = DEFAULT_DATASET_DESCRIPTIONS.index(dataset_description) if index < len(DEFAULT_SYSTEM_PROMPTS): return DEFAULT_SYSTEM_PROMPTS[index] progress(0.3, desc="Initializing text generation") generate_description: TextGeneration = get_prompt_generator() progress(0.7, desc="Generating system prompt") result = next( generate_description.process( [ { "system_prompt": PROMPT_CREATION_PROMPT, "instruction": dataset_description, } ] ) )[0]["generation"] progress(1.0, desc="System prompt generated") return result def generate_sample_dataset(system_prompt, progress=gr.Progress()): if system_prompt in DEFAULT_SYSTEM_PROMPTS: index = DEFAULT_SYSTEM_PROMPTS.index(system_prompt) if index < len(DEFAULT_DATASETS): return DEFAULT_DATASETS[index] result = generate_dataset( system_prompt, num_turns=1, num_rows=1, progress=progress, is_sample=True ) return result def _check_push_to_hub(org_name, repo_name): repo_id = ( f"{org_name}/{repo_name}" if repo_name is not None and org_name is not None else None ) if repo_id is not None: if not all([repo_id, org_name, repo_name]): raise gr.Error( "Please provide a `repo_name` and `org_name` to push the dataset to." ) return repo_id def generate_dataset( system_prompt: str, num_turns: int = 1, num_rows: int = 5, is_sample: bool = False, progress=gr.Progress(), ) -> pd.DataFrame: progress(0.0, desc="(1/2) Generating instructions") magpie_generator = get_magpie_generator( num_turns, num_rows, system_prompt, is_sample ) response_generator = get_response_generator(num_turns, system_prompt, is_sample) total_steps: int = num_rows * 2 batch_size = DEFAULT_BATCH_SIZE # create instructions n_processed = 0 magpie_results = [] while n_processed < num_rows: progress( 0.5 * n_processed / num_rows, total=total_steps, desc="(1/2) Generating instructions", ) remaining_rows = num_rows - n_processed batch_size = min(batch_size, remaining_rows) inputs = [{"system_prompt": system_prompt} for _ in range(batch_size)] batch = list(magpie_generator.process(inputs=inputs)) magpie_results.extend(batch[0]) n_processed += batch_size progress(0.5, desc="(1/2) Generating instructions") # generate responses n_processed = 0 response_results = [] if num_turns == 1: while n_processed < num_rows: progress( 0.5 + 0.5 * n_processed / num_rows, total=total_steps, desc="(2/2) Generating responses", ) batch = magpie_results[n_processed : n_processed + batch_size] responses = list(response_generator.process(inputs=batch)) response_results.extend(responses[0]) n_processed += batch_size for result in response_results: result["prompt"] = result["instruction"] result["completion"] = result["generation"] result["system_prompt"] = system_prompt else: for result in magpie_results: result["conversation"].insert( 0, {"role": "system", "content": system_prompt} ) result["messages"] = result["conversation"] while n_processed < num_rows: progress( 0.5 + 0.5 * n_processed / num_rows, total=total_steps, desc="(2/2) Generating responses", ) batch = magpie_results[n_processed : n_processed + batch_size] responses = list(response_generator.process(inputs=batch)) response_results.extend(responses[0]) n_processed += batch_size for result in response_results: result["messages"].append( {"role": "assistant", "content": result["generation"]} ) progress( 1, total=total_steps, desc="(2/2) Generating responses", ) # create distiset distiset_results = [] for result in response_results: record = {} for relevant_keys in [ "messages", "prompt", "completion", "model_name", "system_prompt", ]: if relevant_keys in result: record[relevant_keys] = result[relevant_keys] distiset_results.append(record) distiset = Distiset( { "default": Dataset.from_list(distiset_results), } ) # If not pushing to hub generate the dataset directly distiset = distiset["default"] if num_turns == 1: outputs = distiset.to_pandas()[["system_prompt", "prompt", "completion"]] else: outputs = distiset.to_pandas()[["messages"]] dataframe = pd.DataFrame(outputs) progress(1.0, desc="Dataset generation completed") return dataframe def push_to_hub( dataframe: pd.DataFrame, private: bool = True, org_name: str = None, repo_name: str = None, oauth_token: Union[OAuthToken, None] = None, progress=gr.Progress(), ) -> pd.DataFrame: original_dataframe = dataframe.copy(deep=True) if "messages" in dataframe.columns: dataframe["messages"] = dataframe["messages"].apply( lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x ) progress(0.1, desc="Setting up dataset") repo_id = _check_push_to_hub(org_name, repo_name) distiset = Distiset( { "default": Dataset.from_pandas(dataframe), } ) progress(0.2, desc="Pushing dataset to hub") distiset.push_to_hub( repo_id=repo_id, private=private, include_script=False, token=oauth_token.token, create_pr=False, ) progress(1.0, desc="Dataset pushed to hub") return original_dataframe def push_to_argilla( dataframe: pd.DataFrame, dataset_name: str, oauth_token: Union[OAuthToken, None] = None, progress=gr.Progress(), ) -> pd.DataFrame: original_dataframe = dataframe.copy(deep=True) if "messages" in dataframe.columns: dataframe["messages"] = dataframe["messages"].apply( lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x ) try: progress(0.1, desc="Setting up user and workspace") client = get_argilla_client() hf_user = HfApi().whoami(token=oauth_token.token)["name"] # Create user if it doesn't exist rg_user = client.users(username=hf_user) if rg_user is None: rg_user = client.users.add(rg.User(username=hf_user, role="admin")) # Create workspace if it doesn't exist workspace = client.workspaces(name=rg_user.username) if workspace is None: workspace = client.workspaces.add(rg.Workspace(name=rg_user.username)) workspace.add_user(rg_user) if "messages" in dataframe.columns: settings = rg.Settings( fields=[ rg.ChatField( name="messages", description="The messages in the conversation" ), ], questions=[ rg.RatingQuestion( name="rating", description="The rating of the conversation", values=list(range(1, 6)), ), ], metadata=[ rg.IntegerMetadataProperty( name="user_message_length", title="User Message Length" ), rg.IntegerMetadataProperty( name="assistant_message_length", title="Assistant Message Length", ), ], vectors=[ rg.VectorField( name="messages_embeddings", dimensions=get_sentence_embedding_dimensions(), ) ], guidelines="Please review the conversation and provide a score for the assistant's response.", ) dataframe["user_message_length"] = dataframe["messages"].apply( lambda x: sum([len(y["content"]) for y in x if y["role"] == "user"]) ) dataframe["assistant_message_length"] = dataframe["messages"].apply( lambda x: sum( [len(y["content"]) for y in x if y["role"] == "assistant"] ) ) dataframe["messages_embeddings"] = get_embeddings( dataframe["messages"].apply( lambda x: " ".join([y["content"] for y in x]) ) ) else: settings = rg.Settings( fields=[ rg.TextField( name="system_prompt", description="The system prompt used for the conversation", required=False, ), rg.TextField( name="prompt", description="The prompt used for the conversation", ), rg.TextField( name="completion", description="The completion from the assistant", ), ], questions=[ rg.RatingQuestion( name="rating", description="The rating of the conversation", values=list(range(1, 6)), ), ], metadata=[ rg.IntegerMetadataProperty( name="prompt_length", title="Prompt Length" ), rg.IntegerMetadataProperty( name="completion_length", title="Completion Length" ), ], vectors=[ rg.VectorField( name="prompt_embeddings", dimensions=get_sentence_embedding_dimensions(), ) ], guidelines="Please review the conversation and correct the prompt and completion where needed.", ) dataframe["prompt_length"] = dataframe["prompt"].apply(len) dataframe["completion_length"] = dataframe["completion"].apply(len) dataframe["prompt_embeddings"] = get_embeddings(dataframe["prompt"]) progress(0.5, desc="Creating dataset") rg_dataset = client.datasets(name=dataset_name, workspace=rg_user.username) if rg_dataset is None: rg_dataset = rg.Dataset( name=dataset_name, workspace=rg_user.username, settings=settings, client=client, ) rg_dataset = rg_dataset.create() progress(0.7, desc="Pushing dataset to Argilla") hf_dataset = Dataset.from_pandas(dataframe) rg_dataset.records.log(records=hf_dataset) progress(1.0, desc="Dataset pushed to Argilla") except Exception as e: raise gr.Error(f"Error pushing dataset to Argilla: {e}") return original_dataframe def validate_argilla_dataset_name( dataset_name: str, final_dataset: pd.DataFrame, add_to_existing_dataset: bool, oauth_token: Union[OAuthToken, None] = None, progress=gr.Progress(), ) -> str: progress(0, desc="Validating dataset configuration") hf_user = HfApi().whoami(token=oauth_token.token)["name"] client = get_argilla_client() if dataset_name is None or dataset_name == "": raise gr.Error("Dataset name is required") dataset = client.datasets(name=dataset_name, workspace=hf_user) if dataset and not add_to_existing_dataset: raise gr.Error(f"Dataset {dataset_name} already exists") return final_dataset def upload_pipeline_code( pipeline_code, org_name, repo_name, oauth_token: Union[OAuthToken, None] = None, progress=gr.Progress(), ): repo_id = _check_push_to_hub(org_name, repo_name) progress(0.1, desc="Uploading pipeline code") with io.BytesIO(pipeline_code.encode("utf-8")) as f: upload_file( path_or_fileobj=f, path_in_repo="pipeline.py", repo_id=repo_id, repo_type="dataset", token=oauth_token.token, commit_message="Include pipeline script", create_pr=False, ) progress(1.0, desc="Pipeline code uploaded") css = """ .main_ui_logged_out{opacity: 0.3; pointer-events: none} """ with gr.Blocks( title="🧬 Synthetic Data Generator", head="🧬 Synthetic Data Generator", css=css, ) as app: with gr.Row(): gr.Markdown( "Want to run this locally or with other LLMs? Take a look at the FAQ tab. distilabel Synthetic Data Generator is free, we use the authentication token to push the dataset to the Hugging Face Hub and not for data generation." ) with gr.Row(): gr.Column() get_login_button() gr.Column() gr.Markdown("## Iterate on a sample dataset") with gr.Column() as main_ui: dataset_description = gr.TextArea( label="Give a precise description of the assistant or tool. Don't describe the dataset", value=DEFAULT_DATASET_DESCRIPTIONS[0], lines=2, ) examples = gr.Examples( elem_id="system_prompt_examples", examples=[[example] for example in DEFAULT_DATASET_DESCRIPTIONS], inputs=[dataset_description], ) with gr.Row(): gr.Column(scale=1) btn_generate_system_prompt = gr.Button( value="Generate system prompt and sample dataset" ) gr.Column(scale=1) system_prompt = gr.TextArea( label="System prompt for dataset generation. You can tune it and regenerate the sample", value=DEFAULT_SYSTEM_PROMPTS[0], lines=5, ) with gr.Row(): sample_dataset = gr.Dataframe( value=DEFAULT_DATASETS[0], label="Sample dataset. Prompts and completions truncated to 256 tokens.", interactive=False, wrap=True, ) with gr.Row(): gr.Column(scale=1) btn_generate_sample_dataset = gr.Button( value="Generate sample dataset", ) gr.Column(scale=1) result = btn_generate_system_prompt.click( fn=generate_system_prompt, inputs=[dataset_description], outputs=[system_prompt], show_progress=True, ).then( fn=generate_sample_dataset, inputs=[system_prompt], outputs=[sample_dataset], show_progress=True, ) btn_generate_sample_dataset.click( fn=generate_sample_dataset, inputs=[system_prompt], outputs=[sample_dataset], show_progress=True, ) # Add a header for the full dataset generation section gr.Markdown("## Generate full dataset") gr.Markdown( "Once you're satisfied with the sample, generate a larger dataset and push it to Argilla or the Hugging Face Hub." ) with gr.Column() as push_to_hub_ui: with gr.Row(variant="panel"): num_turns = gr.Number( value=1, label="Number of turns in the conversation", minimum=1, maximum=4, step=1, info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).", ) num_rows = gr.Number( value=10, label="Number of rows in the dataset", minimum=1, maximum=500, info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.", ) with gr.Tab(label="Argilla"): if get_argilla_client(): with gr.Row(variant="panel"): dataset_name = gr.Textbox( label="Dataset name", placeholder="dataset_name", value="my-distiset", ) add_to_existing_dataset = gr.Checkbox( label="Allow adding records to existing dataset", info="When selected, you do need to ensure the number of turns in the conversation is the same as the number of turns in the existing dataset.", value=False, interactive=True, scale=0.5, ) with gr.Row(variant="panel"): btn_generate_full_dataset_copy = gr.Button( value="Generate", variant="primary", scale=2 ) btn_generate_and_push_to_argilla = gr.Button( value="Generate and Push to Argilla", variant="primary", scale=2, ) btn_push_to_argilla = gr.Button( value="Push to Argilla", variant="primary", scale=2 ) else: gr.Markdown( "Please add `ARGILLA_API_URL` and `ARGILLA_API_KEY` to use Argilla." ) with gr.Tab("Hugging Face Hub"): with gr.Row(variant="panel"): org_name = get_org_dropdown() repo_name = gr.Textbox( label="Repo name", placeholder="dataset_name", value="my-distiset", ) private = gr.Checkbox( label="Private dataset", value=True, interactive=True, scale=0.5, ) with gr.Row(variant="panel"): btn_generate_full_dataset = gr.Button( value="Generate", variant="primary", scale=2 ) btn_generate_and_push_to_hub = gr.Button( value="Generate and Push to Hub", variant="primary", scale=2 ) btn_push_to_hub = gr.Button( value="Push to Hub", variant="primary", scale=2 ) with gr.Row(): final_dataset = gr.Dataframe( value=DEFAULT_DATASETS[0], label="Generated dataset", interactive=False, wrap=True, ) with gr.Row(): success_message = gr.Markdown(visible=False) def show_success_message_argilla(): client = get_argilla_client() argilla_api_url = client.api_url return gr.Markdown( value=f"""

Dataset Published Successfully!

Your dataset is now available at: {argilla_api_url}
Unfamiliar with Argilla? Here are some docs to help you get started:
• Login with OAuth
• Curate your data
• Export your data

""", visible=True, ) def show_success_message_hub(org_name, repo_name): return gr.Markdown( value=f"""

Dataset Published Successfully!

The generated dataset is in the right format for fine-tuning with TRL, AutoTrain or other frameworks. Your dataset is now available at: https://huggingface.co/datasets/{org_name}/{repo_name}

""", visible=True, ) def hide_success_message(): return gr.Markdown(visible=False) gr.Markdown("## Or run this pipeline locally with distilabel") gr.Markdown( "You can run this pipeline locally with distilabel. For more information, please refer to the [distilabel documentation](https://distilabel.argilla.io/) or go to the FAQ tab at the top of the page for more information." ) with gr.Accordion( "Run this pipeline using distilabel", open=False, ): pipeline_code = gr.Code( value=generate_pipeline_code( system_prompt.value, num_turns.value, num_rows.value ), language="python", label="Distilabel Pipeline Code", ) sample_dataset.change( fn=lambda x: x, inputs=[sample_dataset], outputs=[final_dataset], ) gr.on( triggers=[ btn_generate_full_dataset.click, btn_generate_full_dataset_copy.click, ], fn=hide_success_message, outputs=[success_message], ).then( fn=generate_dataset, inputs=[system_prompt, num_turns, num_rows], outputs=[final_dataset], show_progress=True, ) btn_generate_and_push_to_argilla.click( fn=validate_argilla_dataset_name, inputs=[dataset_name, final_dataset, add_to_existing_dataset], outputs=[final_dataset], show_progress=True, ).success( fn=hide_success_message, outputs=[success_message], ).success( fn=generate_dataset, inputs=[system_prompt, num_turns, num_rows], outputs=[final_dataset], show_progress=True, ).success( fn=push_to_argilla, inputs=[final_dataset, dataset_name], outputs=[final_dataset], show_progress=True, ).success( fn=show_success_message_argilla, inputs=[], outputs=[success_message], ) btn_generate_and_push_to_hub.click( fn=hide_success_message, outputs=[success_message], ).then( fn=generate_dataset, inputs=[system_prompt, num_turns, num_rows], outputs=[final_dataset], show_progress=True, ).then( fn=push_to_hub, inputs=[final_dataset, private, org_name, repo_name], outputs=[final_dataset], show_progress=True, ).then( fn=upload_pipeline_code, inputs=[pipeline_code, org_name, repo_name], outputs=[], show_progress=True, ).success( fn=show_success_message_hub, inputs=[org_name, repo_name], outputs=[success_message], ) btn_push_to_hub.click( fn=hide_success_message, outputs=[success_message], ).then( fn=push_to_hub, inputs=[final_dataset, private, org_name, repo_name], outputs=[final_dataset], show_progress=True, ).then( fn=upload_pipeline_code, inputs=[pipeline_code, org_name, repo_name], outputs=[], show_progress=True, ).success( fn=show_success_message_hub, inputs=[org_name, repo_name], outputs=[success_message], ) btn_push_to_argilla.click( fn=hide_success_message, outputs=[success_message], ).success( fn=validate_argilla_dataset_name, inputs=[dataset_name, final_dataset, add_to_existing_dataset], outputs=[final_dataset], show_progress=True, ).success( fn=push_to_argilla, inputs=[final_dataset, dataset_name], outputs=[final_dataset], show_progress=True, ).success( fn=show_success_message_argilla, inputs=[], outputs=[success_message], ) system_prompt.change( fn=generate_pipeline_code, inputs=[system_prompt, num_turns, num_rows], outputs=[pipeline_code], ) num_turns.change( fn=generate_pipeline_code, inputs=[system_prompt, num_turns, num_rows], outputs=[pipeline_code], ) num_rows.change( fn=generate_pipeline_code, inputs=[system_prompt, num_turns, num_rows], outputs=[pipeline_code], ) app.load(get_org_dropdown, outputs=[org_name]) app.load(fn=swap_visibilty, outputs=main_ui)