from typing import List from sentence_transformers import SentenceTransformer from sentence_transformers.models import StaticEmbedding # Initialize a StaticEmbedding module static_embedding = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") model = SentenceTransformer(modules=[static_embedding]) def get_embeddings(texts: List[str]) -> List[List[float]]: return [embedding.tolist() for embedding in model.encode(texts)] def get_sentence_embedding_dimensions() -> int: return model.get_sentence_embedding_dimension()