from fastai.vision.all import * import gradio as gr import cv2 __all__ = ['is_rock', 'learn', 'classify_images', 'get_webcam_image' 'categories', 'image', 'label', 'examples', 'intf'] def is_rock(x): return x[0].issuper() learn = load_learner('RPS_model2.pkl') categories = ('paper', 'rock', 'scissors') def classify_images(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) #def get_webcam_image(): # cap = cv2.VideoCapture(0) # _, frame = cap.read() # cap.release() # return frame image = gr.Webcam() label = gr.outputs.Label() examples = ['rock.jpg', 'paper.jpg', 'scissor.jpg'] intf = gr.Interface(fn = classify_images, inputs = image, outputs = label, examples = examples).launch()