File size: 1,253 Bytes
2e9a8c4
037452a
 
 
 
 
 
 
 
 
 
 
 
 
6ebd1a5
dacbfe7
6ebd1a5
093ef16
6ebd1a5
 
093ef16
6ebd1a5
 
 
 
 
 
 
093ef16
037452a
9d89cb5
dacbfe7
 
 
 
 
037452a
 
 
 
 
 
 
ef575bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gradio as gr
import numpy as np
import pytesseract as pt
import pdf2image
from fpdf import FPDF
import re
import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import os
import pdfkit
import yake
from summarizer import Summarizer,TransformerSummarizer
from transformers import pipelines
nltk.download('punkt')
from transformers import AutoTokenizer, AutoModelForPreTraining
# model_name = 'distilbert-base-uncased'
model_name = 'nlpaueb/legal-bert-base-uncased'
#model_name = 'laxya007/gpt2_legal'
# model_name = 'facebook/bart-large-cnn'

# The setup of huggingface.co
custom_config = AutoConfig.from_pretrained(model_name)
custom_config.output_hidden_states=True
custom_tokenizer = AutoTokenizer.from_pretrained(model_name)
custom_model = AutoModel.from_pretrained(model_name, config=custom_config)
bert_legal_model = Summarizer(custom_model=custom_model, custom_tokenizer=custom_tokenizer)
print('Using model {}\n'.format(model_name))



def get_response(input_text):
    output_text= bert_legal_model(input_text,  min_length = 8, ratio = 0.05)
    return output_text
    
    
iface = gr.Interface(
    get_response, 
    "text", 
    "text"
   )

if __name__ == "__main__":
    iface.launch(share=False)