import gradio as gr import numpy as np import pytesseract as pt import pdf2image from fpdf import FPDF import re import nltk from nltk.tokenize import sent_tokenize from nltk.tokenize import word_tokenize import os import pdfkit import yake from summarizer import Summarizer,TransformerSummarizer from transformers import pipelines nltk.download('punkt') from transformers import AutoTokenizer, AutoModelForPreTraining # model_name = 'distilbert-base-uncased' model_name = 'nlpaueb/legal-bert-base-uncased' #model_name = 'laxya007/gpt2_legal' # model_name = 'facebook/bart-large-cnn' # The setup of huggingface.co custom_config = AutoConfig.from_pretrained(model_name) custom_config.output_hidden_states=True custom_tokenizer = AutoTokenizer.from_pretrained(model_name) custom_model = AutoModel.from_pretrained(model_name, config=custom_config) bert_legal_model = Summarizer(custom_model=custom_model, custom_tokenizer=custom_tokenizer) print('Using model {}\n'.format(model_name)) def get_response(input_text): output_text= bert_legal_model(input_text, min_length = 8, ratio = 0.05) return output_text iface = gr.Interface( get_response, "text", "text" ) if __name__ == "__main__": iface.launch(share=False)