Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from timm.data import resolve_data_config | |
from timm.data.transforms_factory import create_transform | |
from PIL import Image | |
model = torch.load('entire_model.pt',map_location ='cpu') | |
model.eval() | |
#label | |
labels = ['Healthy','Scab'] | |
transform = create_transform(**resolve_data_config({},model = model)) | |
def predict_fn(img): | |
img = img.convert('RGB') | |
img = transform(img).unsqueeze(0) | |
with torch.no_grad(): | |
out = model(img) | |
probabilites = torch.nn.functional.softmax(out[0], dim=0) | |
values, indices = torch.topk(probabilites, k=int(1)) | |
return {labels[i]: v.item() for i, v in zip(indices, values)} | |
description = "Upload an image of an Apple and the model would predict if it is a healthy apple or scab apple." | |
title = "Apple scab detection" | |
gr.Interface(fn=predict_fn, inputs=gr.inputs.Image(type='pil'), outputs='label',description=description, | |
title=title, allow_flagging='never' | |
).launch(debug='True') |