Spaces:
Sleeping
Sleeping
File size: 5,756 Bytes
bc5cf4c d96d494 bc5cf4c d96d494 bc5cf4c d96d494 4abb58b d96d494 4abb58b d96d494 4abb58b bc5cf4c d96d494 bc5cf4c d96d494 bc5cf4c d96d494 bc5cf4c 4abb58b bc5cf4c d96d494 4abb58b d96d494 4abb58b c9b44ee bc5cf4c c9b44ee bc5cf4c d96d494 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import gradio as gr
import openai
import os
import json
import markdown
import re
import time
# OpenAI API setup
openai.api_key = "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"
openai.api_base = "https://api.groq.com/openai/v1"
# File to store conversation history
CONVERSATION_FILE = "conversation_history.json"
# Function to load conversation history
def load_history():
if not os.path.exists(CONVERSATION_FILE):
# Create the file with an empty list as default content
with open(CONVERSATION_FILE, "w") as file:
json.dump([], file)
try:
with open(CONVERSATION_FILE, "r") as file:
return json.load(file)
except json.JSONDecodeError:
return []
# Function to save conversation history
def save_history(history):
try:
with open(CONVERSATION_FILE, "w") as file:
json.dump(history, file, indent=4)
except Exception as e:
print(f"Error saving history: {e}")
# Function to clear conversation history
def clear_conversation_history():
try:
with open(CONVERSATION_FILE, "w") as file:
json.dump([], file)
return "Conversation history cleared successfully.", ""
except Exception as e:
return f"Error clearing history: {e}", ""
# Function to format code block
def format_code_block(code):
"""Wraps the provided code in <pre> and <code> tags for proper display."""
return f"<pre><code>{code}</code></pre>"
def format_code_and_markdown(response):
"""
Handles both code blocks and markdown formatting simultaneously.
- Converts code blocks into HTML <pre><code> tags.
- Converts markdown syntax (e.g., bold, italics) into HTML tags.
"""
# Convert code blocks to HTML <pre><code>...</code></pre> format
def process_code_blocks(text):
code_block_pattern = re.compile(r'```python\n(.*?)```', re.DOTALL)
return re.sub(code_block_pattern, r'<pre><code>\1</code></pre>', text)
# Process the text to handle code blocks
response = process_code_blocks(response)
# Convert Markdown to HTML
html_response = markdown.markdown(response)
return html_response
# Function to get response from the LLM
def get_groq_response(message, history=[]):
try:
messages = [{"role": "system", "content": "Precise answer"}] + history + [{"role": "user", "content": message}]
response = openai.ChatCompletion.create(
model="llama-3.1-70b-versatile",
messages=messages
)
return format_code_and_markdown(response.choices[0].message["content"])
except Exception as e:
return f"Error: {str(e)}"
# Function to simulate typing effect
def simulate_typing_effect(response, delay=1):
time.sleep(delay)
return response
# Chatbot function
def chatbot(user_input, history):
# Load conversation history
conversation_history = history or load_history()
# Format history for the LLM
formatted_history = [{"role": "user" if i % 2 == 0 else "assistant", "content": msg} for i, (msg, _) in enumerate(conversation_history)] + \
[{"role": "assistant", "content": response} for _, response in conversation_history]
# Get bot response
bot_response = get_groq_response(user_input, formatted_history)
# Simulate typing delay
bot_response = simulate_typing_effect(bot_response)
# Update history with the new conversation
conversation_history.append((user_input, bot_response))
# Save the updated history
save_history(conversation_history)
# Format for HTML display
display_html = "".join(
f"<div class='user-message'><b>User:</b> {user}</div>"
f"<div class='bot-message'><b>Bot:</b> {bot}</div>"
for user, bot in conversation_history
)
return conversation_history, display_html, "" # Clear the user input field
# Gradio Interface with enhanced UI/UX styling
with gr.Blocks(css="""
.user-message {
background-color: #9ACBD0;
padding: 10px;
margin: 10px;
border-radius: 8px;
max-width: 60%;
float: right;
clear: both;
}
.bot-message {
background-color: #F2EFE7;
padding: 10px;
margin: 10px;
border-radius: 8px;
max-width: 60%;
float: left;
clear: both;
}
.user-message:hover, .bot-message:hover {
transform: scale(1.02);
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1);
}
.chat-container {
max-height: 500px;
overflow-y: auto;
margin-bottom: 20px;
}
.gradio-button {
background-color: #4CAF50;
color: white;
border-radius: 5px;
padding: 10px 20px;
font-size: 16px;
}
.gradio-button:hover {
background-color: #45a049;
}
""") as demo:
gr.Markdown("""# Mom: We have ChatGPT at Home, \n ChatGPT at Home: """)
chat_display = gr.HTML(label="Conversation")
user_input = gr.Textbox(label="Type your message here: Feel free to ask questions. After you're done, remember to clear the history for privacy. ")
clear_button = gr.Button("Clear History")
system_message = gr.Textbox(label="System Message", interactive=False)
history_state = gr.State(load_history())
# Chat interaction
user_input.submit(chatbot, inputs=[user_input, history_state], outputs=[history_state, chat_display, user_input])
# Clear history button action
clear_button.click(clear_conversation_history, inputs=None, outputs=[system_message, chat_display])
clear_button.click(lambda: [], outputs=history_state) # Reset the history state
# Launch the app
demo.launch()
|