import gradio as gr import openai import os import json import markdown import re import time # OpenAI API setup openai.api_key = "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" openai.api_base = "https://api.groq.com/openai/v1" # File to store conversation history CONVERSATION_FILE = "conversation_history.json" # Function to load conversation history def load_history(): if not os.path.exists(CONVERSATION_FILE): # Create the file with an empty list as default content with open(CONVERSATION_FILE, "w") as file: json.dump([], file) try: with open(CONVERSATION_FILE, "r") as file: return json.load(file) except json.JSONDecodeError: return [] # Function to save conversation history def save_history(history): try: with open(CONVERSATION_FILE, "w") as file: json.dump(history, file, indent=4) except Exception as e: print(f"Error saving history: {e}") # Function to clear conversation history def clear_conversation_history(): try: with open(CONVERSATION_FILE, "w") as file: json.dump([], file) return "Conversation history cleared successfully.", "" except Exception as e: return f"Error clearing history: {e}", "" # Function to format code block def format_code_block(code): """Wraps the provided code in
and tags for proper display."""
return f"{code}
"
def format_code_and_markdown(response):
"""
Handles both code blocks and markdown formatting simultaneously.
- Converts code blocks into HTML tags.
- Converts markdown syntax (e.g., bold, italics) into HTML tags.
"""
# Convert code blocks to HTML ...
format
def process_code_blocks(text):
code_block_pattern = re.compile(r'```python\n(.*?)```', re.DOTALL)
return re.sub(code_block_pattern, r'\1
', text)
# Process the text to handle code blocks
response = process_code_blocks(response)
# Convert Markdown to HTML
html_response = markdown.markdown(response)
return html_response
# Function to get response from the LLM
def get_groq_response(message, history=[]):
try:
messages = [{"role": "system", "content": "Precise answer"}] + history + [{"role": "user", "content": message}]
response = openai.ChatCompletion.create(
model="llama-3.1-70b-versatile",
messages=messages
)
return format_code_and_markdown(response.choices[0].message["content"])
except Exception as e:
return f"Error: {str(e)}"
# Function to simulate typing effect
def simulate_typing_effect(response, delay=1):
time.sleep(delay)
return response
# Chatbot function
def chatbot(user_input, history):
# Load conversation history
conversation_history = history or load_history()
# Format history for the LLM
formatted_history = [{"role": "user" if i % 2 == 0 else "assistant", "content": msg} for i, (msg, _) in enumerate(conversation_history)] + \
[{"role": "assistant", "content": response} for _, response in conversation_history]
# Get bot response
bot_response = get_groq_response(user_input, formatted_history)
# Simulate typing delay
bot_response = simulate_typing_effect(bot_response)
# Update history with the new conversation
conversation_history.append((user_input, bot_response))
# Save the updated history
save_history(conversation_history)
# Format for HTML display
display_html = "".join(
f" "
f" "
for user, bot in conversation_history
)
return conversation_history, display_html, "" # Clear the user input field
# Gradio Interface with enhanced UI/UX styling
with gr.Blocks(css="""
.user-message {
background-color: #9ACBD0;
padding: 10px;
margin: 10px;
border-radius: 8px;
max-width: 60%;
float: right;
clear: both;
}
.bot-message {
background-color: #F2EFE7;
padding: 10px;
margin: 10px;
border-radius: 8px;
max-width: 60%;
float: left;
clear: both;
}
.user-message:hover, .bot-message:hover {
transform: scale(1.02);
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1);
}
.chat-container {
max-height: 500px;
overflow-y: auto;
margin-bottom: 20px;
}
.gradio-button {
background-color: #4CAF50;
color: white;
border-radius: 5px;
padding: 10px 20px;
font-size: 16px;
}
.gradio-button:hover {
background-color: #45a049;
}
""") as demo:
gr.Markdown("""# Mom: We have ChatGPT at Home, \n ChatGPT at Home: """)
chat_display = gr.HTML(label="Conversation")
user_input = gr.Textbox(label="Type your message here: Feel free to ask questions. After you're done, remember to clear the history for privacy. ")
clear_button = gr.Button("Clear History")
system_message = gr.Textbox(label="System Message", interactive=False)
history_state = gr.State(load_history())
# Chat interaction
user_input.submit(chatbot, inputs=[user_input, history_state], outputs=[history_state, chat_display, user_input])
# Clear history button action
clear_button.click(clear_conversation_history, inputs=None, outputs=[system_message, chat_display])
clear_button.click(lambda: [], outputs=history_state) # Reset the history state
# Launch the app
demo.launch()