Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model_name = 'abinayam/gpt-2-tamil'
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
def correct_text(input_text):
|
11 |
+
# Tokenize the input text
|
12 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
13 |
+
|
14 |
+
# Generate corrected text
|
15 |
+
with torch.no_grad():
|
16 |
+
output = model.generate(input_ids, max_length=100, num_return_sequences=1, temperature=0.7)
|
17 |
+
|
18 |
+
# Decode the generated text
|
19 |
+
corrected_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
20 |
+
|
21 |
+
return corrected_text
|
22 |
+
|
23 |
+
# Create the Gradio interface
|
24 |
+
iface = gr.Interface(
|
25 |
+
fn=correct_text,
|
26 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter Tamil text here..."),
|
27 |
+
outputs=gr.Textbox(label="Corrected Text"),
|
28 |
+
title="Tamil Spell Corrector and Grammar Checker",
|
29 |
+
description="This app uses the 'abinayam/gpt-2-tamil' model to correct spelling and grammar in Tamil text.",
|
30 |
+
)
|
31 |
+
|
32 |
+
# Launch the app
|
33 |
+
iface.launch()
|