Initial commit: English to Tamil translation app
Browse files- README.md +11 -0
- app.py +80 -0
- requirements.txt +4 -0
README.md
CHANGED
@@ -10,4 +10,15 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
# English to Tamil Translation with Technical Terms Preserved
|
14 |
+
|
15 |
+
This app translates English text to Tamil while preserving technical terms. Technical terms are highlighted in bold in the output.
|
16 |
+
|
17 |
+
## Features
|
18 |
+
|
19 |
+
- Translates English to Tamil
|
20 |
+
- Preserves technical terms in English
|
21 |
+
- Highlights preserved terms in bold
|
22 |
+
- Uses the mBART-50 many-to-many multilingual machine translation model
|
23 |
+
|
24 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
4 |
+
import re
|
5 |
+
|
6 |
+
# GPU check
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
print(f"Using device: {device}")
|
9 |
+
|
10 |
+
# Load model and tokenizer
|
11 |
+
model_name = "facebook/mbart-large-50-many-to-many-mmt"
|
12 |
+
model = MBartForConditionalGeneration.from_pretrained(model_name).to(device)
|
13 |
+
tokenizer = MBart50TokenizerFast.from_pretrained(model_name)
|
14 |
+
|
15 |
+
# Set languages
|
16 |
+
src_lang, tgt_lang = "en_XX", "ta_IN"
|
17 |
+
|
18 |
+
# Define a set of technical terms (expand this list as needed)
|
19 |
+
technical_terms = {
|
20 |
+
"machine translation", "natural language processing", "nlp", "transformer architecture",
|
21 |
+
"machine learning", "deep learning", "artificial intelligence", "ai", "neural network",
|
22 |
+
"algorithm", "data science", "big data", "cloud computing", "internet of things", "iot",
|
23 |
+
"blockchain", "cybersecurity", "virtual reality", "vr", "augmented reality", "ar",
|
24 |
+
"robotics", "automation", "quantum computing", "5g", "edge computing", "devops",
|
25 |
+
"microservices", "api", "serverless", "container", "docker", "kubernetes", "ml",
|
26 |
+
"computer vision", "natural language understanding", "nlu", "speech recognition",
|
27 |
+
"sentiment analysis", "chatbot", "reinforcement learning", "supervised learning",
|
28 |
+
"unsupervised learning", "convolutional neural network", "cnn", "recurrent neural network", "rnn",
|
29 |
+
"long short-term memory", "lstm", "generative adversarial network", "gan",
|
30 |
+
"transfer learning", "federated learning", "explainable ai", "xai"
|
31 |
+
}
|
32 |
+
|
33 |
+
def preprocess_text(text):
|
34 |
+
# Wrap technical terms with special tokens
|
35 |
+
for term in sorted(technical_terms, key=len, reverse=True):
|
36 |
+
pattern = re.compile(r'\b' + re.escape(term) + r'\b', re.IGNORECASE)
|
37 |
+
text = pattern.sub(lambda m: f"<keep>{m.group()}</keep>", text)
|
38 |
+
return text
|
39 |
+
|
40 |
+
def postprocess_text(text):
|
41 |
+
# Replace special tokens with original terms
|
42 |
+
return re.sub(r'<keep>(.*?)</keep>', r'**\1**', text)
|
43 |
+
|
44 |
+
def translate(text, src_lang=src_lang, tgt_lang=tgt_lang):
|
45 |
+
# Preprocess the text
|
46 |
+
preprocessed_text = preprocess_text(text)
|
47 |
+
|
48 |
+
# Tokenize the preprocessed text
|
49 |
+
inputs = tokenizer(preprocessed_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
50 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
51 |
+
|
52 |
+
# Generate translation
|
53 |
+
translated = model.generate(
|
54 |
+
**inputs,
|
55 |
+
forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang],
|
56 |
+
max_length=512,
|
57 |
+
num_beams=5,
|
58 |
+
length_penalty=1.0,
|
59 |
+
early_stopping=True
|
60 |
+
)
|
61 |
+
|
62 |
+
# Decode the generated tokens
|
63 |
+
translated_text = tokenizer.batch_decode(translated, skip_special_tokens=True)[0]
|
64 |
+
|
65 |
+
# Postprocess the translated text
|
66 |
+
return postprocess_text(translated_text)
|
67 |
+
|
68 |
+
# Gradio interface
|
69 |
+
def gradio_translate(text):
|
70 |
+
return translate(text)
|
71 |
+
|
72 |
+
iface = gr.Interface(
|
73 |
+
fn=gradio_translate,
|
74 |
+
inputs=gr.Textbox(lines=5, label="English Text"),
|
75 |
+
outputs=gr.Textbox(lines=5, label="Tamil Translation"),
|
76 |
+
title="English to Tamil Translation with Technical Terms Preserved",
|
77 |
+
description="This app translates English text to Tamil while preserving technical terms. Technical terms are highlighted in bold in the output."
|
78 |
+
)
|
79 |
+
|
80 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
sentencepiece
|