Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,025 Bytes
eadd7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
"""
This file contains primitives for multi-gpu communication.
This is useful when doing distributed training.
"""
import os
import pickle
import shutil
import gc
import mmcv
import torch
import torch.distributed as dist
from mmcv.runner import get_dist_info
def is_distributed():
return get_world_size() > 1
def get_world_size():
if not dist.is_available():
return 1
if not dist.is_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
return dist.get_rank()
def get_local_rank():
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
local_rank = int(os.getenv('LOCAL_RANK', 0))
return local_rank
def is_master():
return get_rank() == 0
def is_local_master():
return get_local_rank() == 0
def get_local_proc_group(group_size=8):
world_size = get_world_size()
if world_size <= group_size or group_size == 1:
return None
assert world_size % group_size == 0, f'world size ({world_size}) should be evenly divided by group size ({group_size}).'
process_groups = getattr(get_local_proc_group, 'process_groups', dict())
if group_size not in process_groups:
num_groups = dist.get_world_size() // group_size
groups = [list(range(i * group_size, (i + 1) * group_size)) for i in range(num_groups)]
process_groups.update({group_size: [torch.distributed.new_group(group) for group in groups]})
get_local_proc_group.process_groups = process_groups
group_idx = get_rank() // group_size
process_groups = get_local_proc_group.process_groups.get(group_size)[group_idx]
return process_groups
def synchronize():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = dist.get_world_size()
if world_size == 1:
return
dist.barrier()
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
to_device = torch.device("cuda")
# to_device = torch.device("cpu")
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to(to_device)
# obtain Tensor size of each rank
local_size = torch.LongTensor([tensor.numel()]).to(to_device)
size_list = [torch.LongTensor([0]).to(to_device) for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.ByteTensor(size=(max_size,)).to(to_device))
if local_size != max_size:
padding = torch.ByteTensor(size=(max_size - local_size,)).to(to_device)
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that process with rank
0 has the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.reduce(values, dst=0)
if dist.get_rank() == 0 and average:
# only main process gets accumulated, so only divide by
# world_size in this case
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
def broadcast(data, **kwargs):
if get_world_size() == 1:
return data
data = [data]
dist.broadcast_object_list(data, **kwargs)
return data[0]
def all_gather_cpu(result_part, tmpdir=None, collect_by_master=True):
rank, world_size = get_dist_info()
if tmpdir is None:
tmpdir = './tmp'
if rank == 0:
mmcv.mkdir_or_exist(tmpdir)
synchronize()
# dump the part result to the dir
mmcv.dump(result_part, os.path.join(tmpdir, f'part_{rank}.pkl'))
synchronize()
# collect all parts
if collect_by_master and rank != 0:
return None
else:
# load results of all parts from tmp dir
results = []
for i in range(world_size):
part_file = os.path.join(tmpdir, f'part_{i}.pkl')
results.append(mmcv.load(part_file))
if not collect_by_master:
synchronize()
# remove tmp dir
if rank == 0:
shutil.rmtree(tmpdir)
return results
def all_gather_tensor(tensor, group_size=None, group=None):
if group_size is None:
group_size = get_world_size()
if group_size == 1:
output = [tensor]
else:
output = [torch.zeros_like(tensor) for _ in range(group_size)]
dist.all_gather(output, tensor, group=group)
return output
def gather_difflen_tensor(feat, num_samples_list, concat=True, group=None, group_size=None):
world_size = get_world_size()
if world_size == 1:
if not concat:
return [feat]
return feat
num_samples, *feat_dim = feat.size()
# padding to max number of samples
feat_padding = feat.new_zeros((max(num_samples_list), *feat_dim))
feat_padding[:num_samples] = feat
# gather
feat_gather = all_gather_tensor(feat_padding, group=group, group_size=group_size)
for r, num in enumerate(num_samples_list):
feat_gather[r] = feat_gather[r][:num]
if concat:
feat_gather = torch.cat(feat_gather)
return feat_gather
class GatherLayer(torch.autograd.Function):
'''Gather tensors from all process, supporting backward propagation.
'''
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
num_samples = torch.tensor(input.size(0), dtype=torch.long, device=input.device)
ctx.num_samples_list = all_gather_tensor(num_samples)
output = gather_difflen_tensor(input, ctx.num_samples_list, concat=False)
return tuple(output)
@staticmethod
def backward(ctx, *grads): # tuple(output)'s grad
input, = ctx.saved_tensors
num_samples_list = ctx.num_samples_list
rank = get_rank()
start, end = sum(num_samples_list[:rank]), sum(num_samples_list[:rank + 1])
grads = torch.cat(grads)
if is_distributed():
dist.all_reduce(grads)
grad_out = torch.zeros_like(input)
grad_out[:] = grads[start:end]
return grad_out, None, None
class GatherLayerWithGroup(torch.autograd.Function):
'''Gather tensors from all process, supporting backward propagation.
'''
@staticmethod
def forward(ctx, input, group, group_size):
ctx.save_for_backward(input)
ctx.group_size = group_size
output = all_gather_tensor(input, group=group, group_size=group_size)
return tuple(output)
@staticmethod
def backward(ctx, *grads): # tuple(output)'s grad
input, = ctx.saved_tensors
grads = torch.stack(grads)
if is_distributed():
dist.all_reduce(grads)
grad_out = torch.zeros_like(input)
grad_out[:] = grads[get_rank() % ctx.group_size]
return grad_out, None, None
def gather_layer_with_group(data, group=None, group_size=None):
if group_size is None:
group_size = get_world_size()
output = GatherLayer.apply(data, group, group_size)
return output
from typing import Union
import math
# from torch.distributed.fsdp.fully_sharded_data_parallel import TrainingState_, _calc_grad_norm
@torch.no_grad()
def clip_grad_norm_(
self, max_norm: Union[float, int], norm_type: Union[float, int] = 2.0
) -> None:
self._lazy_init()
self._wait_for_previous_optim_step()
assert self._is_root, "clip_grad_norm should only be called on the root (parent) instance"
self._assert_state(TrainingState_.IDLE)
max_norm = float(max_norm)
norm_type = float(norm_type)
# Computes the max norm for this shard's gradients and sync's across workers
local_norm = _calc_grad_norm(self.params_with_grad, norm_type).cuda() # type: ignore[arg-type]
if norm_type == math.inf:
total_norm = local_norm
dist.all_reduce(total_norm, op=torch.distributed.ReduceOp.MAX, group=self.process_group)
else:
total_norm = local_norm ** norm_type
dist.all_reduce(total_norm, group=self.process_group)
total_norm = total_norm ** (1.0 / norm_type)
clip_coef = torch.tensor(max_norm, dtype=total_norm.dtype, device=total_norm.device) / (total_norm + 1e-6)
if clip_coef < 1:
# multiply by clip_coef, aka, (max_norm/total_norm).
for p in self.params_with_grad:
assert p.grad is not None
p.grad.detach().mul_(clip_coef.to(p.grad.device))
return total_norm
def flush():
gc.collect()
torch.cuda.empty_cache()
|