Spaces:
Runtime error
Runtime error
Create proteins_viz.py
Browse files- proteins_viz.py +135 -0
proteins_viz.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from biopandas.pdb import PandasPdb
|
3 |
+
from prody import parsePDBHeader
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
def read_pdb_to_dataframe(
|
9 |
+
pdb_path,
|
10 |
+
model_index: int = 1,
|
11 |
+
parse_header: bool = True,
|
12 |
+
) -> pd.DataFrame:
|
13 |
+
"""
|
14 |
+
Read a PDB file, and return a Pandas DataFrame containing the atomic coordinates and metadata.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
pdb_path (str, optional): Path to a local PDB file to read. Defaults to None.
|
18 |
+
model_index (int, optional): Index of the model to extract from the PDB file, in case
|
19 |
+
it contains multiple models. Defaults to 1.
|
20 |
+
parse_header (bool, optional): Whether to parse the PDB header and extract metadata.
|
21 |
+
Defaults to True.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
pd.DataFrame: A DataFrame containing the atomic coordinates and metadata, with one row
|
25 |
+
per atom
|
26 |
+
"""
|
27 |
+
atomic_df = PandasPdb().read_pdb(pdb_path)
|
28 |
+
if parse_header:
|
29 |
+
header = parsePDBHeader(pdb_path)
|
30 |
+
else:
|
31 |
+
header = None
|
32 |
+
atomic_df = atomic_df.get_model(model_index)
|
33 |
+
if len(atomic_df.df["ATOM"]) == 0:
|
34 |
+
raise ValueError(f"No model found for index: {model_index}")
|
35 |
+
|
36 |
+
return pd.concat([atomic_df.df["ATOM"], atomic_df.df["HETATM"]]), header
|
37 |
+
|
38 |
+
from graphein.protein.graphs import label_node_id
|
39 |
+
|
40 |
+
def process_dataframe(df: pd.DataFrame, granularity='CA') -> pd.DataFrame:
|
41 |
+
"""
|
42 |
+
Process a DataFrame of protein structure data to reduce ambiguity and simplify analysis.
|
43 |
+
|
44 |
+
This function performs the following steps:
|
45 |
+
1. Handles alternate locations for an atom, defaulting to keep the first one if multiple exist.
|
46 |
+
2. Assigns a unique node_id to each residue in the DataFrame, using a helper function label_node_id.
|
47 |
+
3. Filters the DataFrame based on specified granularity (defaults to 'CA' for alpha carbon).
|
48 |
+
|
49 |
+
Parameters
|
50 |
+
----------
|
51 |
+
df : pd.DataFrame
|
52 |
+
The DataFrame containing protein structure data to process. It is expected to contain columns 'alt_loc' and 'atom_name'.
|
53 |
+
|
54 |
+
granularity : str, optional
|
55 |
+
The level of detail or perspective at which the DataFrame should be analyzed. Defaults to 'CA' (alpha carbon).
|
56 |
+
"""
|
57 |
+
# handle the case of alternative locations,
|
58 |
+
# if so default to the 1st one = A
|
59 |
+
if 'alt_loc' in df.columns:
|
60 |
+
df['alt_loc'] = df['alt_loc'].replace('', 'A')
|
61 |
+
df = df.loc[(df['alt_loc']=='A')]
|
62 |
+
df = label_node_id(df, granularity)
|
63 |
+
df = df.loc[(df['atom_name']==granularity)]
|
64 |
+
return df
|
65 |
+
|
66 |
+
|
67 |
+
from graphein.protein.graphs import initialise_graph_with_metadata
|
68 |
+
from graphein.protein.graphs import add_nodes_to_graph
|
69 |
+
from graphein.protein.visualisation import plotly_protein_structure_graph
|
70 |
+
from PIL import Image
|
71 |
+
import networkx as nx
|
72 |
+
|
73 |
+
def take_care(pdb_path):
|
74 |
+
|
75 |
+
|
76 |
+
df, header = read_pdb_to_dataframe(pdb_path)
|
77 |
+
process_df = process_dataframe(df)
|
78 |
+
|
79 |
+
g = initialise_graph_with_metadata(protein_df=process_df, # from above cell
|
80 |
+
raw_pdb_df=df, # Store this for traceability
|
81 |
+
pdb_code = '3nir', #and again
|
82 |
+
granularity = 'CA' # Store this so we know what kind of graph we have
|
83 |
+
)
|
84 |
+
g = add_nodes_to_graph(g)
|
85 |
+
|
86 |
+
|
87 |
+
def add_backbone_edges(G: nx.Graph) -> nx.Graph:
|
88 |
+
# Iterate over every chain
|
89 |
+
for chain_id in G.graph["chain_ids"]:
|
90 |
+
# Find chain residues
|
91 |
+
chain_residues = [
|
92 |
+
(n, v) for n, v in G.nodes(data=True) if v["chain_id"] == chain_id
|
93 |
+
]
|
94 |
+
# Iterate over every residue in chain
|
95 |
+
for i, residue in enumerate(chain_residues):
|
96 |
+
try:
|
97 |
+
# Checks not at chain terminus
|
98 |
+
if i == len(chain_residues) - 1:
|
99 |
+
continue
|
100 |
+
# Asserts residues are on the same chain
|
101 |
+
cond_1 = ( residue[1]["chain_id"] == chain_residues[i + 1][1]["chain_id"])
|
102 |
+
# Asserts residue numbers are adjacent
|
103 |
+
cond_2 = (abs(residue[1]["residue_number"] - chain_residues[i + 1][1]["residue_number"])== 1)
|
104 |
+
|
105 |
+
# If this checks out, we add a peptide bond
|
106 |
+
if (cond_1) and (cond_2):
|
107 |
+
# Adds "peptide bond" between current residue and the next
|
108 |
+
if G.has_edge(i, i + 1):
|
109 |
+
G.edges[i, i + 1]["kind"].add('backbone_bond')
|
110 |
+
else:
|
111 |
+
G.add_edge(residue[0],chain_residues[i + 1][0],kind={'backbone_bond'},)
|
112 |
+
except IndexError as e:
|
113 |
+
print(e)
|
114 |
+
return G
|
115 |
+
|
116 |
+
g = add_backbone_edges(g)
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
p = plotly_protein_structure_graph(
|
121 |
+
g,
|
122 |
+
colour_edges_by="kind",
|
123 |
+
colour_nodes_by="seq_position",
|
124 |
+
label_node_ids=False,
|
125 |
+
plot_title="Backbone Protein Graph",
|
126 |
+
node_size_multiplier=1,
|
127 |
+
)
|
128 |
+
image_file = "protein_graph.png"
|
129 |
+
p.write_image(image_file, format='png')
|
130 |
+
|
131 |
+
|
132 |
+
# Load the PNG image into a PIL image
|
133 |
+
image = Image.open(image_file)
|
134 |
+
|
135 |
+
return image
|