Spaces:
Running
Running
ashhadahsan
commited on
Commit
·
e59b179
1
Parent(s):
fcd701f
commit one
Browse files- app.py +312 -0
- requirements.txt +8 -0
- utils/preprocess/__init__.py +0 -0
- utils/preprocess/preprocess_data.py +117 -0
- utils/preprocess/projections.py +35 -0
app.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from pybitget import Client
|
3 |
+
import datetime
|
4 |
+
import pandas as pd
|
5 |
+
from utils.preprocess.preprocess_data import (
|
6 |
+
preprocess,
|
7 |
+
normalize,
|
8 |
+
split_train_test,
|
9 |
+
create_dataset,
|
10 |
+
build_model,
|
11 |
+
train_model,
|
12 |
+
)
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
import plotly.graph_objects as go
|
15 |
+
from sklearn.metrics import (
|
16 |
+
r2_score,
|
17 |
+
)
|
18 |
+
from utils.preprocess.projections import project
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
client = Client(
|
22 |
+
st.secrets["apikey"],
|
23 |
+
st.secrets["password"],
|
24 |
+
passphrase=st.secrets["passphrase"],
|
25 |
+
)
|
26 |
+
from itertools import cycle
|
27 |
+
import plotly.express as px
|
28 |
+
from sklearn.model_selection import train_test_split
|
29 |
+
|
30 |
+
|
31 |
+
def get_symbols():
|
32 |
+
data = client.spot_get_symbols()
|
33 |
+
return [x["symbol"] for x in data["data"]]
|
34 |
+
|
35 |
+
|
36 |
+
def get_data(symbol, period, after, before):
|
37 |
+
print(symbol, period, after, end)
|
38 |
+
data = client.spot_get_candle_data(
|
39 |
+
symbol=symbol,
|
40 |
+
period=period,
|
41 |
+
after=after,
|
42 |
+
before=before,
|
43 |
+
limit=1000,
|
44 |
+
)["data"]
|
45 |
+
return pd.DataFrame(data)
|
46 |
+
|
47 |
+
|
48 |
+
st.set_page_config(page_title="Keras Bitget predictions", page_icon="📈", layout="wide")
|
49 |
+
st.title("Crypto price prediction")
|
50 |
+
|
51 |
+
coin = st.selectbox("Select your symbol", options=get_symbols())
|
52 |
+
period = st.selectbox(
|
53 |
+
"Select the interval",
|
54 |
+
options=[
|
55 |
+
"1min",
|
56 |
+
"5min",
|
57 |
+
"15min",
|
58 |
+
"30min",
|
59 |
+
"1h",
|
60 |
+
"4h",
|
61 |
+
"6h",
|
62 |
+
"12h",
|
63 |
+
"1day",
|
64 |
+
"1week",
|
65 |
+
],
|
66 |
+
)
|
67 |
+
default_time = datetime.time(13, 0)
|
68 |
+
start = st.date_input(
|
69 |
+
"Start date of the data",
|
70 |
+
# value=datetime.datetime.now().date() - datetime.timedelta(days=30),
|
71 |
+
value=datetime.date(year=2022, month=1, day=1),
|
72 |
+
max_value=datetime.datetime.now().date(),
|
73 |
+
)
|
74 |
+
|
75 |
+
# start = datetime.datetime.timestamp(start)
|
76 |
+
end = st.date_input(
|
77 |
+
"End date of the data",
|
78 |
+
value=datetime.datetime.now().date(),
|
79 |
+
max_value=datetime.datetime.now().date(),
|
80 |
+
)
|
81 |
+
days = st.slider(label="Days to project", min_value=1, max_value=30, step=1, value=20)
|
82 |
+
epochs = st.slider(
|
83 |
+
label="Training Epochs", min_value=10, max_value=200, step=20, value=20
|
84 |
+
)
|
85 |
+
# end = datetime.datetime.timestamp(end)
|
86 |
+
# end = st.date_input("Start date of the data", datetime.now().date())
|
87 |
+
if st.button("Start"):
|
88 |
+
data = get_data(
|
89 |
+
coin,
|
90 |
+
period,
|
91 |
+
after=str(
|
92 |
+
int(
|
93 |
+
datetime.datetime.timestamp(
|
94 |
+
datetime.datetime.combine(start, default_time)
|
95 |
+
)
|
96 |
+
)
|
97 |
+
* 1000
|
98 |
+
),
|
99 |
+
before=str(
|
100 |
+
int(
|
101 |
+
datetime.datetime.timestamp(
|
102 |
+
datetime.datetime.combine(end, default_time)
|
103 |
+
)
|
104 |
+
)
|
105 |
+
* 1000
|
106 |
+
),
|
107 |
+
)
|
108 |
+
|
109 |
+
closedf = preprocess(data)
|
110 |
+
names = cycle(
|
111 |
+
["Stock Open Price", "Stock Close Price", "Stock High Price", "Stock Low Price"]
|
112 |
+
)
|
113 |
+
|
114 |
+
figp = px.line(
|
115 |
+
closedf,
|
116 |
+
x=closedf.Date,
|
117 |
+
y=[closedf["open"], closedf["close"], closedf["high"], closedf["low"]],
|
118 |
+
labels={"Date": "Date", "value": "Stock value"},
|
119 |
+
)
|
120 |
+
figp.update_layout(
|
121 |
+
title_text="Stock analysis chart",
|
122 |
+
font_size=15,
|
123 |
+
font_color="black",
|
124 |
+
legend_title_text="Stock Parameters",
|
125 |
+
)
|
126 |
+
figp.for_each_trace(lambda t: t.update(name=next(names)))
|
127 |
+
figp.update_xaxes(showgrid=False)
|
128 |
+
figp.update_yaxes(showgrid=False)
|
129 |
+
|
130 |
+
st.plotly_chart(figp, use_container_width=True)
|
131 |
+
|
132 |
+
close_stock = closedf.copy()
|
133 |
+
close_stock = close_stock[["Date", "close"]]
|
134 |
+
|
135 |
+
st.write(closedf.shape)
|
136 |
+
close_stock_train, close_stock_test = train_test_split(close_stock, train_size=0.60)
|
137 |
+
st.write(close_stock_train.shape)
|
138 |
+
|
139 |
+
closedfsc, scaler = normalize(closedf=closedf)
|
140 |
+
training_size = int(len(closedf) * 0.60)
|
141 |
+
test_size = len(closedf) - training_size
|
142 |
+
train_set, test_set = split_train_test(
|
143 |
+
closedfsc=closedfsc, training_size=training_size, test_size=test_size
|
144 |
+
)
|
145 |
+
st.write(train_set.shape)
|
146 |
+
time_step = 15
|
147 |
+
X_train, y_train = create_dataset(train_set, time_step)
|
148 |
+
X_test, y_test = create_dataset(test_set, time_step)
|
149 |
+
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
|
150 |
+
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
|
151 |
+
model = build_model()
|
152 |
+
st.write("Epoch Progress:")
|
153 |
+
|
154 |
+
progress_bar = st.progress(0)
|
155 |
+
|
156 |
+
def update_progress(epoch, history):
|
157 |
+
progress_percent = (epoch + 1) / epochs * 100
|
158 |
+
progress_bar.progress(progress_percent / 100) # Normalize to [0.0, 1.0]
|
159 |
+
|
160 |
+
# emp.write(
|
161 |
+
# f"Epoch {epoch + 1}/{epochs} - Loss: {history.history['loss'][0]} - Val Loss: {history.history['val_loss'][0]}"
|
162 |
+
# )
|
163 |
+
|
164 |
+
trained_model, train_losses, val_loss = train_model(
|
165 |
+
model,
|
166 |
+
X_train,
|
167 |
+
y_train,
|
168 |
+
X_test,
|
169 |
+
y_test,
|
170 |
+
epochs,
|
171 |
+
progress_callback=update_progress,
|
172 |
+
)
|
173 |
+
|
174 |
+
st.write("Training Completed!")
|
175 |
+
|
176 |
+
epochs = [i for i in range(len(train_losses))]
|
177 |
+
|
178 |
+
trace_train = go.Scatter(
|
179 |
+
x=epochs,
|
180 |
+
y=train_losses,
|
181 |
+
mode="lines",
|
182 |
+
name="Training Loss",
|
183 |
+
line=dict(color="red"),
|
184 |
+
)
|
185 |
+
|
186 |
+
# Create a trace for validation loss
|
187 |
+
trace_val = go.Scatter(
|
188 |
+
x=epochs,
|
189 |
+
y=val_loss,
|
190 |
+
mode="lines",
|
191 |
+
name="Validation Loss",
|
192 |
+
line=dict(color="blue"),
|
193 |
+
)
|
194 |
+
|
195 |
+
# Create the layout for the plot
|
196 |
+
layout = go.Layout(
|
197 |
+
title="Training and Validation Loss",
|
198 |
+
xaxis=dict(title="Epochs"),
|
199 |
+
yaxis=dict(title="Loss"),
|
200 |
+
)
|
201 |
+
|
202 |
+
# Create the figure
|
203 |
+
fig = go.Figure(data=[trace_train, trace_val], layout=layout)
|
204 |
+
|
205 |
+
# Show the plot
|
206 |
+
st.plotly_chart(fig, use_container_width=True)
|
207 |
+
|
208 |
+
train_predict = trained_model.predict(X_train)
|
209 |
+
test_predict = trained_model.predict(X_test)
|
210 |
+
|
211 |
+
train_predict = scaler.inverse_transform(train_predict)
|
212 |
+
test_predict = scaler.inverse_transform(test_predict)
|
213 |
+
original_ytrain = scaler.inverse_transform(y_train.reshape(-1, 1))
|
214 |
+
original_ytest = scaler.inverse_transform(y_test.reshape(-1, 1))
|
215 |
+
|
216 |
+
st.write(
|
217 |
+
"Train data Accuracy score:",
|
218 |
+
r2_score(original_ytrain, train_predict),
|
219 |
+
)
|
220 |
+
st.write(
|
221 |
+
"Test data Accuracy score:",
|
222 |
+
r2_score(original_ytest, test_predict),
|
223 |
+
)
|
224 |
+
|
225 |
+
plt.figure(figsize=(16, 10))
|
226 |
+
plt.plot(original_ytest)
|
227 |
+
plt.plot(test_predict)
|
228 |
+
plt.ylabel("Price")
|
229 |
+
plt.title(coin + " Single Point Price Prediction")
|
230 |
+
plt.legend(["Actual", "Predicted"])
|
231 |
+
plt.xticks(color="w")
|
232 |
+
|
233 |
+
st.pyplot(plt.gcf(), use_container_width=True)
|
234 |
+
projected_data = project(
|
235 |
+
time_step=15, test_data=test_set, model=trained_model, days=days
|
236 |
+
)
|
237 |
+
last_days = np.arange(1, time_step + 1)
|
238 |
+
day_pred = np.arange(time_step + 1, time_step + days + 1)
|
239 |
+
temp_mat = np.empty((len(last_days) + days + 1, 1))
|
240 |
+
|
241 |
+
temp_mat[:] = np.nan
|
242 |
+
temp_mat = temp_mat.reshape(1, -1).tolist()[0]
|
243 |
+
|
244 |
+
last_original_days_value = temp_mat
|
245 |
+
next_predicted_days_value = temp_mat
|
246 |
+
|
247 |
+
last_original_days_value[0 : time_step + 1] = (
|
248 |
+
scaler.inverse_transform(
|
249 |
+
close_stock[len(close_stock.close) - time_step :].close.values.reshape(
|
250 |
+
-1, 1
|
251 |
+
)
|
252 |
+
)
|
253 |
+
.reshape(1, -1)
|
254 |
+
.tolist()[0]
|
255 |
+
)
|
256 |
+
next_predicted_days_value[time_step + 1 :] = (
|
257 |
+
scaler.inverse_transform(np.array(projected_data).reshape(-1, 1))
|
258 |
+
.reshape(1, -1)
|
259 |
+
.tolist()[0]
|
260 |
+
)
|
261 |
+
|
262 |
+
new_pred_plot = pd.DataFrame(
|
263 |
+
{
|
264 |
+
"last_original_days_value": last_original_days_value,
|
265 |
+
"next_predicted_days_value": next_predicted_days_value,
|
266 |
+
}
|
267 |
+
)
|
268 |
+
|
269 |
+
names = cycle(["Last 15 days close price", "Predicted next 30 days close price"])
|
270 |
+
|
271 |
+
fig = px.line(
|
272 |
+
new_pred_plot,
|
273 |
+
x=new_pred_plot.index,
|
274 |
+
y=[
|
275 |
+
new_pred_plot["last_original_days_value"],
|
276 |
+
new_pred_plot["next_predicted_days_value"],
|
277 |
+
],
|
278 |
+
labels={"value": "Stock price", "index": "Timestamp"},
|
279 |
+
)
|
280 |
+
fig.update_layout(
|
281 |
+
title_text="Compare last 15 days vs next 30 days",
|
282 |
+
plot_bgcolor="white",
|
283 |
+
font_size=15,
|
284 |
+
font_color="black",
|
285 |
+
legend_title_text="Close Price",
|
286 |
+
)
|
287 |
+
|
288 |
+
fig.for_each_trace(lambda t: t.update(name=next(names)))
|
289 |
+
fig.update_xaxes(showgrid=False)
|
290 |
+
fig.update_yaxes(showgrid=False)
|
291 |
+
st.plotly_chart(fig, use_container_width=True)
|
292 |
+
|
293 |
+
lstmdf = closedfsc.tolist()
|
294 |
+
lstmdf.extend((np.array(projected_data).reshape(-1, 1)).tolist())
|
295 |
+
lstmdf = scaler.inverse_transform(lstmdf).reshape(1, -1).tolist()[0]
|
296 |
+
|
297 |
+
names = cycle(["Close price"])
|
298 |
+
|
299 |
+
fig = px.line(lstmdf, labels={"value": "Stock price", "index": "Timestamp"})
|
300 |
+
fig.update_layout(
|
301 |
+
title_text="Plotting whole closing stock price with prediction",
|
302 |
+
plot_bgcolor="white",
|
303 |
+
font_size=15,
|
304 |
+
font_color="black",
|
305 |
+
legend_title_text="Stock",
|
306 |
+
)
|
307 |
+
|
308 |
+
fig.for_each_trace(lambda t: t.update(name=next(names)))
|
309 |
+
|
310 |
+
fig.update_xaxes(showgrid=False)
|
311 |
+
fig.update_yaxes(showgrid=False)
|
312 |
+
st.plotly_chart(fig, use_container_width=True)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
pybitget
|
5 |
+
keras
|
6 |
+
scikit-learn
|
7 |
+
matplotlib
|
8 |
+
tqdm
|
utils/preprocess/__init__.py
ADDED
File without changes
|
utils/preprocess/preprocess_data.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from sklearn.preprocessing import MinMaxScaler
|
5 |
+
from keras.models import Sequential
|
6 |
+
from keras.layers import Dense
|
7 |
+
from keras.layers import LSTM
|
8 |
+
from keras.models import Sequential
|
9 |
+
from keras.layers import Activation, Dense
|
10 |
+
from keras.layers import LSTM
|
11 |
+
from keras.layers import Dropout
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
neurons = 512 # number of hidden units in the LSTM layer
|
15 |
+
activation_function = "tanh" # activation function for LSTM and Dense layer
|
16 |
+
loss = (
|
17 |
+
"mse" # loss function for calculating the gradient, in this case Mean Squared Error
|
18 |
+
)
|
19 |
+
optimizer = "adam" # optimizer for appljying gradient decent
|
20 |
+
dropout = 0.25 # dropout ratio used after each LSTM layer to avoid overfitting
|
21 |
+
batch_size = 128
|
22 |
+
|
23 |
+
|
24 |
+
def preprocess(df):
|
25 |
+
df = df.copy()
|
26 |
+
df["ts"] = df["ts"].astype(np.int64)
|
27 |
+
df["ts"] = df["ts"] / 1000
|
28 |
+
df["timestamp"] = pd.to_datetime(df["ts"], unit="s")
|
29 |
+
df = df[["timestamp", "low", "high", "close", "open", "quoteVol"]]
|
30 |
+
for col in ["low", "high", "close", "open", "quoteVol"]:
|
31 |
+
df[col] = df[col].astype(float)
|
32 |
+
df.set_index(df["timestamp"], inplace=True)
|
33 |
+
df.drop(["timestamp"], axis=1, inplace=True)
|
34 |
+
df["Date"] = pd.to_datetime(df.index.values.tolist()).date
|
35 |
+
|
36 |
+
return df
|
37 |
+
|
38 |
+
|
39 |
+
def normalize(closedf):
|
40 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
41 |
+
closedfsc = scaler.fit_transform(
|
42 |
+
np.array(closedf.drop("Date", axis=1)).reshape(-1, 1)
|
43 |
+
)
|
44 |
+
return closedfsc, scaler
|
45 |
+
|
46 |
+
|
47 |
+
def split_train_test(closedfsc, training_size, test_size):
|
48 |
+
train_data, test_data = (
|
49 |
+
closedfsc[0:training_size, :],
|
50 |
+
closedfsc[training_size : len(closedfsc), :1],
|
51 |
+
)
|
52 |
+
return train_data, test_data
|
53 |
+
|
54 |
+
|
55 |
+
def create_dataset(dataset, time_step=1):
|
56 |
+
dataX, dataY = [], []
|
57 |
+
for i in range(len(dataset) - time_step - 1):
|
58 |
+
a = dataset[i : (i + time_step), 0] ###i=0, 0,1,2,3-----99 100
|
59 |
+
dataX.append(a)
|
60 |
+
dataY.append(dataset[i + time_step, 0])
|
61 |
+
return np.array(dataX), np.array(dataY)
|
62 |
+
|
63 |
+
|
64 |
+
# def build_model(inputs):
|
65 |
+
# model = Sequential()
|
66 |
+
# model.add(
|
67 |
+
# LSTM(
|
68 |
+
# neurons,
|
69 |
+
# return_sequences=True,
|
70 |
+
# input_shape=(inputs.shape[1], inputs.shape[2]),
|
71 |
+
# activation=activation_function,
|
72 |
+
# )
|
73 |
+
# )
|
74 |
+
# model.add(Dropout(dropout))
|
75 |
+
# model.add(LSTM(neurons, return_sequences=True, activation=activation_function))
|
76 |
+
# model.add(Dropout(dropout))
|
77 |
+
# model.add(LSTM(neurons, activation=activation_function))
|
78 |
+
# model.add(Dropout(dropout))
|
79 |
+
# model.add(Dense(units=1))
|
80 |
+
# model.add(Activation(activation_function))
|
81 |
+
# model.compile(loss=loss, optimizer=optimizer, metrics=["mae"])
|
82 |
+
# return model
|
83 |
+
|
84 |
+
|
85 |
+
def build_model():
|
86 |
+
model = Sequential()
|
87 |
+
|
88 |
+
model.add(LSTM(256, input_shape=(None, 1), activation="relu"))
|
89 |
+
|
90 |
+
model.add(Dense(1))
|
91 |
+
|
92 |
+
model.compile(loss="mean_squared_error", optimizer="adam")
|
93 |
+
return model
|
94 |
+
|
95 |
+
|
96 |
+
def train_model(
|
97 |
+
model, x_train, y_train, X_test, y_test, epochs, progress_callback=None
|
98 |
+
):
|
99 |
+
train_losses = [] # To store training losses
|
100 |
+
val_losses = [] # To store validation losses
|
101 |
+
for epoch in tqdm(range(epochs)):
|
102 |
+
history = model.fit(
|
103 |
+
x_train,
|
104 |
+
y_train,
|
105 |
+
epochs=1,
|
106 |
+
verbose=0,
|
107 |
+
validation_data=(X_test, y_test),
|
108 |
+
batch_size=32,
|
109 |
+
)
|
110 |
+
train_loss = history.history["loss"][0]
|
111 |
+
val_loss = history.history["val_loss"][0]
|
112 |
+
|
113 |
+
train_losses.append(train_loss)
|
114 |
+
val_losses.append(val_loss)
|
115 |
+
if progress_callback:
|
116 |
+
progress_callback(epoch, history)
|
117 |
+
return model, train_losses, val_losses
|
utils/preprocess/projections.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy import array
|
2 |
+
|
3 |
+
|
4 |
+
def project(time_step: int, test_data, model, days: int = 30):
|
5 |
+
x_input = test_data[len(test_data) - time_step :].reshape(1, -1)
|
6 |
+
temp_input = list(x_input)
|
7 |
+
temp_input = temp_input[0].tolist()
|
8 |
+
lst_output = []
|
9 |
+
n_steps = time_step
|
10 |
+
i = 0
|
11 |
+
pred_days = days
|
12 |
+
while i < pred_days:
|
13 |
+
if len(temp_input) > time_step:
|
14 |
+
x_input = array(temp_input[1:])
|
15 |
+
# print("{} day input {}".format(i,x_input))
|
16 |
+
x_input = x_input.reshape(1, -1)
|
17 |
+
x_input = x_input.reshape((1, n_steps, 1))
|
18 |
+
|
19 |
+
yhat = model.predict(x_input, verbose=0)
|
20 |
+
# print("{} day output {}".format(i,yhat))
|
21 |
+
temp_input.extend(yhat[0].tolist())
|
22 |
+
temp_input = temp_input[1:]
|
23 |
+
# print(temp_input)
|
24 |
+
|
25 |
+
lst_output.extend(yhat.tolist())
|
26 |
+
i = i + 1
|
27 |
+
|
28 |
+
else:
|
29 |
+
x_input = x_input.reshape((1, n_steps, 1))
|
30 |
+
yhat = model.predict(x_input, verbose=0)
|
31 |
+
temp_input.extend(yhat[0].tolist())
|
32 |
+
|
33 |
+
lst_output.extend(yhat.tolist())
|
34 |
+
i = i + 1
|
35 |
+
return lst_output
|