File size: 1,882 Bytes
8e5dadf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
from PIL import Image
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor

from lang_sam.models.utils import get_device_type

device_type = get_device_type()
DEVICE = torch.device(device_type)

if torch.cuda.is_available():
    torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
    if torch.cuda.get_device_properties(0).major >= 8:
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True


class GDINO:
    def __init__(self):
        self.build_model()

    def build_model(self, ckpt_path: str | None = None):
        model_id = "IDEA-Research/grounding-dino-base"
        self.processor = AutoProcessor.from_pretrained(model_id)
        self.model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(
            DEVICE
        )

    def predict(
        self,
        pil_images: list[Image.Image],
        text_prompt: list[str],
        box_threshold: float,
        text_threshold: float,
    ) -> list[dict]:
        for i, prompt in enumerate(text_prompt):
            if prompt[-1] != ".":
                text_prompt[i] += "."
        inputs = self.processor(images=pil_images, text=text_prompt, return_tensors="pt").to(DEVICE)
        with torch.no_grad():
            outputs = self.model(**inputs)

        results = self.processor.post_process_grounded_object_detection(
            outputs,
            inputs.input_ids,
            box_threshold=box_threshold,
            text_threshold=text_threshold,
            target_sizes=[k.size[::-1] for k in pil_images],
        )
        return results


if __name__ == "__main__":
    gdino = GDINO()
    gdino.build_model()
    out = gdino.predict(
        [Image.open("./assets/car.jpeg"), Image.open("./assets/car.jpeg")],
        ["wheel", "wheel"],
        0.3,
        0.25,
    )
    print(out)