Spaces:
Running
Running
Commit
·
1f44dc5
1
Parent(s):
77642f9
Update app.py
Browse files
app.py
CHANGED
@@ -4,13 +4,13 @@ from transformers import pipeline
|
|
4 |
from stqdm import stqdm
|
5 |
from simplet5 import SimpleT5
|
6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
-
from transformers import BertTokenizer
|
8 |
from tensorflow.keras.models import load_model
|
9 |
from tensorflow.nn import softmax
|
10 |
import numpy as np
|
11 |
from datetime import datetime
|
12 |
import logging
|
13 |
-
from
|
14 |
|
15 |
date = datetime.now().strftime(r"%Y-%m-%d")
|
16 |
model_classes = {
|
@@ -64,8 +64,12 @@ def classify_category():
|
|
64 |
|
65 |
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
66 |
def classify_sub_theme():
|
67 |
-
tokenizer = BertTokenizer.from_pretrained(
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
return tokenizer, new_model
|
70 |
|
71 |
|
@@ -96,7 +100,6 @@ if st.button("Process", type="primary"):
|
|
96 |
cancel_button3 = st.empty()
|
97 |
if uploaded_file is not None:
|
98 |
if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]:
|
99 |
-
|
100 |
df = pd.read_excel(uploaded_file, engine="openpyxl")
|
101 |
if uploaded_file.name.split(".")[-1] in [".csv"]:
|
102 |
df = pd.read_csv(uploaded_file)
|
@@ -116,7 +119,6 @@ if st.button("Process", type="primary"):
|
|
116 |
summary = []
|
117 |
|
118 |
for x in stqdm(range(len(text))):
|
119 |
-
|
120 |
if cancel_button.button("Cancel", key=x):
|
121 |
del model
|
122 |
break
|
@@ -185,7 +187,6 @@ if st.button("Process", type="primary"):
|
|
185 |
model, tokenizer = load_t5()
|
186 |
summary = []
|
187 |
for x in stqdm(range(len(text))):
|
188 |
-
|
189 |
if cancel_button2.button("Cancel", key=x):
|
190 |
del model, tokenizer
|
191 |
break
|
|
|
4 |
from stqdm import stqdm
|
5 |
from simplet5 import SimpleT5
|
6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
+
from transformers import BertTokenizer, TFBertForSequenceClassification
|
8 |
from tensorflow.keras.models import load_model
|
9 |
from tensorflow.nn import softmax
|
10 |
import numpy as np
|
11 |
from datetime import datetime
|
12 |
import logging
|
13 |
+
from subconst import sub_themes_dict
|
14 |
|
15 |
date = datetime.now().strftime(r"%Y-%m-%d")
|
16 |
model_classes = {
|
|
|
64 |
|
65 |
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
66 |
def classify_sub_theme():
|
67 |
+
tokenizer = BertTokenizer.from_pretrained(
|
68 |
+
"ashhadahsan/amazon-subtheme-bert-base-finetuned"
|
69 |
+
)
|
70 |
+
new_model = TFBertForSequenceClassification.from_pretrained(
|
71 |
+
"ashhadahsan/amazon-subtheme-bert-base-finetuned"
|
72 |
+
)
|
73 |
return tokenizer, new_model
|
74 |
|
75 |
|
|
|
100 |
cancel_button3 = st.empty()
|
101 |
if uploaded_file is not None:
|
102 |
if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]:
|
|
|
103 |
df = pd.read_excel(uploaded_file, engine="openpyxl")
|
104 |
if uploaded_file.name.split(".")[-1] in [".csv"]:
|
105 |
df = pd.read_csv(uploaded_file)
|
|
|
119 |
summary = []
|
120 |
|
121 |
for x in stqdm(range(len(text))):
|
|
|
122 |
if cancel_button.button("Cancel", key=x):
|
123 |
del model
|
124 |
break
|
|
|
187 |
model, tokenizer = load_t5()
|
188 |
summary = []
|
189 |
for x in stqdm(range(len(text))):
|
|
|
190 |
if cancel_button2.button("Cancel", key=x):
|
191 |
del model, tokenizer
|
192 |
break
|