ashhadahsan commited on
Commit
1f44dc5
·
1 Parent(s): 77642f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -4,13 +4,13 @@ from transformers import pipeline
4
  from stqdm import stqdm
5
  from simplet5 import SimpleT5
6
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
7
- from transformers import BertTokenizer
8
  from tensorflow.keras.models import load_model
9
  from tensorflow.nn import softmax
10
  import numpy as np
11
  from datetime import datetime
12
  import logging
13
- from constants import sub_themes_dict
14
 
15
  date = datetime.now().strftime(r"%Y-%m-%d")
16
  model_classes = {
@@ -64,8 +64,12 @@ def classify_category():
64
 
65
  @st.cache(allow_output_mutation=True, suppress_st_warning=True)
66
  def classify_sub_theme():
67
- tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
68
- new_model = load_model("sub_theme_model")
 
 
 
 
69
  return tokenizer, new_model
70
 
71
 
@@ -96,7 +100,6 @@ if st.button("Process", type="primary"):
96
  cancel_button3 = st.empty()
97
  if uploaded_file is not None:
98
  if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]:
99
-
100
  df = pd.read_excel(uploaded_file, engine="openpyxl")
101
  if uploaded_file.name.split(".")[-1] in [".csv"]:
102
  df = pd.read_csv(uploaded_file)
@@ -116,7 +119,6 @@ if st.button("Process", type="primary"):
116
  summary = []
117
 
118
  for x in stqdm(range(len(text))):
119
-
120
  if cancel_button.button("Cancel", key=x):
121
  del model
122
  break
@@ -185,7 +187,6 @@ if st.button("Process", type="primary"):
185
  model, tokenizer = load_t5()
186
  summary = []
187
  for x in stqdm(range(len(text))):
188
-
189
  if cancel_button2.button("Cancel", key=x):
190
  del model, tokenizer
191
  break
 
4
  from stqdm import stqdm
5
  from simplet5 import SimpleT5
6
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
7
+ from transformers import BertTokenizer, TFBertForSequenceClassification
8
  from tensorflow.keras.models import load_model
9
  from tensorflow.nn import softmax
10
  import numpy as np
11
  from datetime import datetime
12
  import logging
13
+ from subconst import sub_themes_dict
14
 
15
  date = datetime.now().strftime(r"%Y-%m-%d")
16
  model_classes = {
 
64
 
65
  @st.cache(allow_output_mutation=True, suppress_st_warning=True)
66
  def classify_sub_theme():
67
+ tokenizer = BertTokenizer.from_pretrained(
68
+ "ashhadahsan/amazon-subtheme-bert-base-finetuned"
69
+ )
70
+ new_model = TFBertForSequenceClassification.from_pretrained(
71
+ "ashhadahsan/amazon-subtheme-bert-base-finetuned"
72
+ )
73
  return tokenizer, new_model
74
 
75
 
 
100
  cancel_button3 = st.empty()
101
  if uploaded_file is not None:
102
  if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]:
 
103
  df = pd.read_excel(uploaded_file, engine="openpyxl")
104
  if uploaded_file.name.split(".")[-1] in [".csv"]:
105
  df = pd.read_csv(uploaded_file)
 
119
  summary = []
120
 
121
  for x in stqdm(range(len(text))):
 
122
  if cancel_button.button("Cancel", key=x):
123
  del model
124
  break
 
187
  model, tokenizer = load_t5()
188
  summary = []
189
  for x in stqdm(range(len(text))):
 
190
  if cancel_button2.button("Cancel", key=x):
191
  del model, tokenizer
192
  break