Spaces:
Running
Running
ashhadahsan
commited on
Commit
·
3086575
1
Parent(s):
a62fb4c
update
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from simplet5 import SimpleT5
|
|
6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
|
8 |
|
9 |
-
@st.cache
|
10 |
def load_t5():
|
11 |
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
|
12 |
|
@@ -14,7 +13,7 @@ def load_t5():
|
|
14 |
return model, tokenizer
|
15 |
|
16 |
|
17 |
-
@st.cache
|
18 |
def custom_model():
|
19 |
return pipeline("summarization", model="my_awesome_sum/")
|
20 |
|
@@ -22,7 +21,7 @@ def custom_model():
|
|
22 |
@st.cache
|
23 |
def convert_df(df):
|
24 |
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
25 |
-
return df.to_csv().encode("utf-8")
|
26 |
|
27 |
|
28 |
@st.cache
|
@@ -77,7 +76,7 @@ if st.button("Process"):
|
|
77 |
model, tokenizer = load_t5()
|
78 |
text = df["text"].values.tolist()
|
79 |
summary = []
|
80 |
-
for x in stqdm(range(
|
81 |
|
82 |
tokens_input = tokenizer.encode(
|
83 |
"summarize: " + text[x],
|
@@ -96,7 +95,7 @@ if st.button("Process"):
|
|
96 |
summary.append(summary_gen)
|
97 |
|
98 |
output = pd.DataFrame(
|
99 |
-
{"text": df["text"].values.tolist()
|
100 |
)
|
101 |
csv = convert_df(output)
|
102 |
st.download_button(
|
@@ -113,13 +112,13 @@ if st.button("Process"):
|
|
113 |
load_one_line_summarizer(model=model)
|
114 |
|
115 |
summary = []
|
116 |
-
for x in stqdm(range(
|
117 |
try:
|
118 |
summary.append(model.predict(text[x])[0])
|
119 |
except:
|
120 |
pass
|
121 |
output = pd.DataFrame(
|
122 |
-
{"text": df["text"].values.tolist()
|
123 |
)
|
124 |
csv = convert_df(output)
|
125 |
st.download_button(
|
|
|
6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
|
8 |
|
|
|
9 |
def load_t5():
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
|
11 |
|
|
|
13 |
return model, tokenizer
|
14 |
|
15 |
|
16 |
+
@st.cache
|
17 |
def custom_model():
|
18 |
return pipeline("summarization", model="my_awesome_sum/")
|
19 |
|
|
|
21 |
@st.cache
|
22 |
def convert_df(df):
|
23 |
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
24 |
+
return df.to_csv(index=False).encode("utf-8")
|
25 |
|
26 |
|
27 |
@st.cache
|
|
|
76 |
model, tokenizer = load_t5()
|
77 |
text = df["text"].values.tolist()
|
78 |
summary = []
|
79 |
+
for x in stqdm(range(len(text))):
|
80 |
|
81 |
tokens_input = tokenizer.encode(
|
82 |
"summarize: " + text[x],
|
|
|
95 |
summary.append(summary_gen)
|
96 |
|
97 |
output = pd.DataFrame(
|
98 |
+
{"text": df["text"].values.tolist(), "summary": summary}
|
99 |
)
|
100 |
csv = convert_df(output)
|
101 |
st.download_button(
|
|
|
112 |
load_one_line_summarizer(model=model)
|
113 |
|
114 |
summary = []
|
115 |
+
for x in stqdm(range(len(text))):
|
116 |
try:
|
117 |
summary.append(model.predict(text[x])[0])
|
118 |
except:
|
119 |
pass
|
120 |
output = pd.DataFrame(
|
121 |
+
{"text": df["text"].values.tolist(), "summary": summary}
|
122 |
)
|
123 |
csv = convert_df(output)
|
124 |
st.download_button(
|