ashhadahsan commited on
Commit
3086575
·
1 Parent(s): a62fb4c
Files changed (1) hide show
  1. app.py +6 -7
app.py CHANGED
@@ -6,7 +6,6 @@ from simplet5 import SimpleT5
6
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
7
 
8
 
9
- @st.cache
10
  def load_t5():
11
  model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
12
 
@@ -14,7 +13,7 @@ def load_t5():
14
  return model, tokenizer
15
 
16
 
17
- @st.cache(allow_output_mutation=False)
18
  def custom_model():
19
  return pipeline("summarization", model="my_awesome_sum/")
20
 
@@ -22,7 +21,7 @@ def custom_model():
22
  @st.cache
23
  def convert_df(df):
24
  # IMPORTANT: Cache the conversion to prevent computation on every rerun
25
- return df.to_csv().encode("utf-8")
26
 
27
 
28
  @st.cache
@@ -77,7 +76,7 @@ if st.button("Process"):
77
  model, tokenizer = load_t5()
78
  text = df["text"].values.tolist()
79
  summary = []
80
- for x in stqdm(range(10)):
81
 
82
  tokens_input = tokenizer.encode(
83
  "summarize: " + text[x],
@@ -96,7 +95,7 @@ if st.button("Process"):
96
  summary.append(summary_gen)
97
 
98
  output = pd.DataFrame(
99
- {"text": df["text"].values.tolist()[0:10], "summary": summary}
100
  )
101
  csv = convert_df(output)
102
  st.download_button(
@@ -113,13 +112,13 @@ if st.button("Process"):
113
  load_one_line_summarizer(model=model)
114
 
115
  summary = []
116
- for x in stqdm(range(10)):
117
  try:
118
  summary.append(model.predict(text[x])[0])
119
  except:
120
  pass
121
  output = pd.DataFrame(
122
- {"text": df["text"].values.tolist()[0:10], "summary": summary}
123
  )
124
  csv = convert_df(output)
125
  st.download_button(
 
6
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
7
 
8
 
 
9
  def load_t5():
10
  model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
11
 
 
13
  return model, tokenizer
14
 
15
 
16
+ @st.cache
17
  def custom_model():
18
  return pipeline("summarization", model="my_awesome_sum/")
19
 
 
21
  @st.cache
22
  def convert_df(df):
23
  # IMPORTANT: Cache the conversion to prevent computation on every rerun
24
+ return df.to_csv(index=False).encode("utf-8")
25
 
26
 
27
  @st.cache
 
76
  model, tokenizer = load_t5()
77
  text = df["text"].values.tolist()
78
  summary = []
79
+ for x in stqdm(range(len(text))):
80
 
81
  tokens_input = tokenizer.encode(
82
  "summarize: " + text[x],
 
95
  summary.append(summary_gen)
96
 
97
  output = pd.DataFrame(
98
+ {"text": df["text"].values.tolist(), "summary": summary}
99
  )
100
  csv = convert_df(output)
101
  st.download_button(
 
112
  load_one_line_summarizer(model=model)
113
 
114
  summary = []
115
+ for x in stqdm(range(len(text))):
116
  try:
117
  summary.append(model.predict(text[x])[0])
118
  except:
119
  pass
120
  output = pd.DataFrame(
121
+ {"text": df["text"].values.tolist(), "summary": summary}
122
  )
123
  csv = convert_df(output)
124
  st.download_button(