Spaces:
Running
Running
ashhadahsan
commited on
Commit
Β·
da5430f
1
Parent(s):
adf26de
Create pages/1_π_predict.py
Browse files- pages/1_π_predict.py +560 -0
pages/1_π_predict.py
ADDED
@@ -0,0 +1,560 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import pipeline
|
4 |
+
from stqdm import stqdm
|
5 |
+
from simplet5 import SimpleT5
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
+
from transformers import BertTokenizer, TFBertForSequenceClassification
|
8 |
+
from datetime import datetime
|
9 |
+
import logging
|
10 |
+
from transformers import TextClassificationPipeline
|
11 |
+
import gc
|
12 |
+
from datasets import load_dataset
|
13 |
+
from utils.openllmapi.api import ChatBot
|
14 |
+
from utils.openllmapi.exceptions import *
|
15 |
+
import time
|
16 |
+
from typing import List
|
17 |
+
from collections import OrderedDict
|
18 |
+
|
19 |
+
tokenizer_kwargs = dict(
|
20 |
+
max_length=128,
|
21 |
+
truncation=True,
|
22 |
+
padding=True,
|
23 |
+
)
|
24 |
+
SLEEP = 2
|
25 |
+
|
26 |
+
|
27 |
+
def cleanMemory(obj: TextClassificationPipeline):
|
28 |
+
del obj
|
29 |
+
gc.collect()
|
30 |
+
|
31 |
+
|
32 |
+
@st.cache_data
|
33 |
+
def getAllCats():
|
34 |
+
data = load_dataset("ashhadahsan/amazon_theme")
|
35 |
+
data = data["train"].to_pandas()
|
36 |
+
labels = [x for x in list(set(data.iloc[:, 1].values.tolist())) if x != "Unknown"]
|
37 |
+
del data
|
38 |
+
return labels
|
39 |
+
|
40 |
+
|
41 |
+
@st.cache_data
|
42 |
+
def getAllSubCats():
|
43 |
+
data = load_dataset("ashhadahsan/amazon_theme")
|
44 |
+
data = data["train"].to_pandas()
|
45 |
+
labels = [x for x in list(set(data.iloc[:, 1].values.tolist())) if x != "Unknown"]
|
46 |
+
del data
|
47 |
+
return labels
|
48 |
+
|
49 |
+
|
50 |
+
def assignHF(bot, what: str, to: str, old: List):
|
51 |
+
try:
|
52 |
+
old = ", ".join(old)
|
53 |
+
message_content = bot.chat(
|
54 |
+
f"""'Assign a one-line {what} to this summary of the text of a review
|
55 |
+
{to}
|
56 |
+
already assigned themes are , {old}
|
57 |
+
theme""",
|
58 |
+
)
|
59 |
+
try:
|
60 |
+
return message_content.split(":")[1].strip()
|
61 |
+
except:
|
62 |
+
return message_content.strip()
|
63 |
+
except ChatError:
|
64 |
+
return ""
|
65 |
+
|
66 |
+
|
67 |
+
@st.cache_resource
|
68 |
+
def loadZeroShotClassification():
|
69 |
+
classifierzero = pipeline(
|
70 |
+
"zero-shot-classification", model="facebook/bart-large-mnli"
|
71 |
+
)
|
72 |
+
return classifierzero
|
73 |
+
|
74 |
+
|
75 |
+
def assignZeroShot(zero, to: str, old: List):
|
76 |
+
assigned = zero(to, old)
|
77 |
+
assigneddict = dict(zip(assigned["labels"], assigned["scores"]))
|
78 |
+
od = OrderedDict(sorted(assigneddict.items(), key=lambda x: x[1], reverse=True))
|
79 |
+
return [od.keys()][0]
|
80 |
+
|
81 |
+
|
82 |
+
date = datetime.now().strftime(r"%Y-%m-%d")
|
83 |
+
|
84 |
+
|
85 |
+
@st.cache_resource
|
86 |
+
def load_t5() -> (AutoModelForSeq2SeqLM, AutoTokenizer):
|
87 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
|
88 |
+
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
90 |
+
return model, tokenizer
|
91 |
+
|
92 |
+
|
93 |
+
@st.cache_resource
|
94 |
+
def summarizationModel():
|
95 |
+
return pipeline("summarization", model="my_awesome_sum/")
|
96 |
+
|
97 |
+
|
98 |
+
@st.cache_resource
|
99 |
+
def convert_df(df: pd.DataFrame):
|
100 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
101 |
+
return df.to_csv(index=False).encode("utf-8")
|
102 |
+
|
103 |
+
|
104 |
+
# @st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
105 |
+
# @st.cache_resource
|
106 |
+
def load_one_line_summarizer(model):
|
107 |
+
return model.load_model("t5", "snrspeaks/t5-one-line-summary")
|
108 |
+
|
109 |
+
|
110 |
+
@st.cache_resource
|
111 |
+
def classify_theme() -> TextClassificationPipeline:
|
112 |
+
tokenizer = BertTokenizer.from_pretrained(
|
113 |
+
"ashhadahsan/amazon-theme-bert-base-finetuned"
|
114 |
+
)
|
115 |
+
model = TFBertForSequenceClassification.from_pretrained(
|
116 |
+
"ashhadahsan/amazon-theme-bert-base-finetuned"
|
117 |
+
)
|
118 |
+
pipeline = TextClassificationPipeline(
|
119 |
+
model=model, tokenizer=tokenizer, top_k=1, **tokenizer_kwargs
|
120 |
+
)
|
121 |
+
return pipeline
|
122 |
+
|
123 |
+
|
124 |
+
@st.cache_resource
|
125 |
+
def classify_sub_theme() -> TextClassificationPipeline:
|
126 |
+
tokenizer = BertTokenizer.from_pretrained(
|
127 |
+
"ashhadahsan/amazon-subtheme-bert-base-finetuned"
|
128 |
+
)
|
129 |
+
model = TFBertForSequenceClassification.from_pretrained(
|
130 |
+
"ashhadahsan/amazon-subtheme-bert-base-finetuned"
|
131 |
+
)
|
132 |
+
pipeline = TextClassificationPipeline(
|
133 |
+
model=model, tokenizer=tokenizer, top_k=1, **tokenizer_kwargs
|
134 |
+
)
|
135 |
+
return pipeline
|
136 |
+
|
137 |
+
|
138 |
+
st.set_page_config(layout="wide", page_title="Amazon Review | Summarizer")
|
139 |
+
st.title("Amazon Review Summarizer")
|
140 |
+
|
141 |
+
uploaded_file = st.file_uploader("Choose a file", type=["xlsx", "xls", "csv"])
|
142 |
+
|
143 |
+
try:
|
144 |
+
bot = ChatBot(
|
145 |
+
cookies={
|
146 |
+
"hf-chat": st.secrets["hf-chat"],
|
147 |
+
"token": st.secrets["token"],
|
148 |
+
}
|
149 |
+
)
|
150 |
+
except ChatBotInitError as e:
|
151 |
+
print(e)
|
152 |
+
|
153 |
+
summarizer_option = st.selectbox(
|
154 |
+
"Select Summarizer",
|
155 |
+
("Custom trained on the dataset", "t5-base", "t5-one-line-summary"),
|
156 |
+
)
|
157 |
+
col1, col2, col3 = st.columns([1, 1, 1])
|
158 |
+
|
159 |
+
with col1:
|
160 |
+
summary_yes = st.checkbox("Summrization", value=False)
|
161 |
+
|
162 |
+
with col2:
|
163 |
+
classification = st.checkbox("Classify Category", value=True)
|
164 |
+
|
165 |
+
with col3:
|
166 |
+
sub_theme = st.checkbox("Sub theme classification", value=True)
|
167 |
+
|
168 |
+
treshold = st.slider(
|
169 |
+
label="Model Confidence value",
|
170 |
+
min_value=0.1,
|
171 |
+
max_value=0.8,
|
172 |
+
step=0.1,
|
173 |
+
value=0.6,
|
174 |
+
help="The confidence value of the model",
|
175 |
+
)
|
176 |
+
|
177 |
+
ps = st.empty()
|
178 |
+
|
179 |
+
if st.button("Process", type="primary"):
|
180 |
+
themes = getAllCats()
|
181 |
+
subthemes = getAllSubCats()
|
182 |
+
# st.write(themes)
|
183 |
+
|
184 |
+
oneline = SimpleT5()
|
185 |
+
load_one_line_summarizer(model=oneline)
|
186 |
+
zeroline = loadZeroShotClassification()
|
187 |
+
|
188 |
+
cancel_button = st.empty()
|
189 |
+
cancel_button2 = st.empty()
|
190 |
+
cancel_button3 = st.empty()
|
191 |
+
if uploaded_file is not None:
|
192 |
+
if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]:
|
193 |
+
df = pd.read_excel(uploaded_file, engine="openpyxl")
|
194 |
+
if uploaded_file.name.split(".")[-1] in [".csv"]:
|
195 |
+
df = pd.read_csv(uploaded_file)
|
196 |
+
columns = df.columns.values.tolist()
|
197 |
+
columns = [x.lower() for x in columns]
|
198 |
+
df.columns = columns
|
199 |
+
print(summarizer_option)
|
200 |
+
outputdf = pd.DataFrame()
|
201 |
+
try:
|
202 |
+
text = df["text"].values.tolist()
|
203 |
+
outputdf["text"] = text
|
204 |
+
if summarizer_option == "Custom trained on the dataset":
|
205 |
+
if summary_yes:
|
206 |
+
model = summarizationModel()
|
207 |
+
|
208 |
+
progress_text = "Summarization in progress. Please wait."
|
209 |
+
summary = []
|
210 |
+
|
211 |
+
for x in stqdm(range(len(text))):
|
212 |
+
if cancel_button.button("Cancel", key=x):
|
213 |
+
del model
|
214 |
+
break
|
215 |
+
try:
|
216 |
+
summary.append(
|
217 |
+
model(
|
218 |
+
f"summarize: {text[x]}",
|
219 |
+
max_length=50,
|
220 |
+
early_stopping=True,
|
221 |
+
)[0]["summary_text"]
|
222 |
+
)
|
223 |
+
except:
|
224 |
+
pass
|
225 |
+
outputdf["summary"] = summary
|
226 |
+
del model
|
227 |
+
if classification:
|
228 |
+
themePipe = classify_theme()
|
229 |
+
classes = []
|
230 |
+
classesUnlabel = []
|
231 |
+
classesUnlabelZero = []
|
232 |
+
for x in stqdm(
|
233 |
+
text,
|
234 |
+
desc="Assigning Themes ...",
|
235 |
+
total=len(text),
|
236 |
+
colour="#BF1A1A",
|
237 |
+
):
|
238 |
+
output = themePipe(x)[0][0]["label"]
|
239 |
+
classes.append(output)
|
240 |
+
score = round(themePipe(x)[0][0]["score"], 2)
|
241 |
+
if score <= treshold:
|
242 |
+
onelineoutput=oneline.predict(x)[0]
|
243 |
+
time.sleep(SLEEP)
|
244 |
+
print("hit")
|
245 |
+
classesUnlabel.append(
|
246 |
+
assignHF(
|
247 |
+
bot=bot,
|
248 |
+
what="theme",
|
249 |
+
to=onelineoutput,
|
250 |
+
old=themes,
|
251 |
+
)
|
252 |
+
)
|
253 |
+
classesUnlabelZero.append(
|
254 |
+
assignZeroShot(
|
255 |
+
zero=zeroline, to=onelineoutput, old=themes
|
256 |
+
)
|
257 |
+
)
|
258 |
+
|
259 |
+
else:
|
260 |
+
classesUnlabel.append("")
|
261 |
+
classesUnlabelZero.append("")
|
262 |
+
|
263 |
+
outputdf["Review Theme"] = classes
|
264 |
+
outputdf["Review Theme-issue-new"] = classesUnlabel
|
265 |
+
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
266 |
+
cleanMemory(themePipe)
|
267 |
+
if sub_theme:
|
268 |
+
subThemePipe = classify_sub_theme()
|
269 |
+
classes = []
|
270 |
+
classesUnlabel = []
|
271 |
+
classesUnlabelZero = []
|
272 |
+
for x in stqdm(
|
273 |
+
text,
|
274 |
+
desc="Assigning Subthemes ...",
|
275 |
+
total=len(text),
|
276 |
+
colour="green",
|
277 |
+
):
|
278 |
+
output = subThemePipe(x)[0][0]["label"]
|
279 |
+
classes.append(output)
|
280 |
+
score = round(subThemePipe(x)[0][0]["score"], 2)
|
281 |
+
if score <= treshold:
|
282 |
+
onelineoutput=oneline.predict(x)[0]
|
283 |
+
|
284 |
+
time.sleep(SLEEP)
|
285 |
+
|
286 |
+
print("hit")
|
287 |
+
classesUnlabel.append(
|
288 |
+
assignHF(
|
289 |
+
bot=bot,
|
290 |
+
what="subtheme",
|
291 |
+
to=onelineoutput,
|
292 |
+
old=subthemes,
|
293 |
+
)
|
294 |
+
)
|
295 |
+
classesUnlabelZero.append(
|
296 |
+
assignZeroShot(
|
297 |
+
zero=zeroline,
|
298 |
+
to=onelineoutput,
|
299 |
+
old=subthemes,
|
300 |
+
)
|
301 |
+
)
|
302 |
+
|
303 |
+
else:
|
304 |
+
classesUnlabel.append("")
|
305 |
+
classesUnlabelZero.append("")
|
306 |
+
|
307 |
+
outputdf["Review SubTheme"] = classes
|
308 |
+
outputdf["Review SubTheme-issue-new"] = classesUnlabel
|
309 |
+
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
310 |
+
|
311 |
+
cleanMemory(subThemePipe)
|
312 |
+
|
313 |
+
csv = convert_df(outputdf)
|
314 |
+
st.download_button(
|
315 |
+
label="Download output as CSV",
|
316 |
+
data=csv,
|
317 |
+
file_name=f"{summarizer_option}_{date}_df.csv",
|
318 |
+
mime="text/csv",
|
319 |
+
use_container_width=True,
|
320 |
+
)
|
321 |
+
if summarizer_option == "t5-base":
|
322 |
+
if summary_yes:
|
323 |
+
model, tokenizer = load_t5()
|
324 |
+
summary = []
|
325 |
+
for x in stqdm(range(len(text))):
|
326 |
+
if cancel_button2.button("Cancel", key=x):
|
327 |
+
del model, tokenizer
|
328 |
+
break
|
329 |
+
tokens_input = tokenizer.encode(
|
330 |
+
"summarize: " + text[x],
|
331 |
+
return_tensors="pt",
|
332 |
+
max_length=tokenizer.model_max_length,
|
333 |
+
truncation=True,
|
334 |
+
)
|
335 |
+
summary_ids = model.generate(
|
336 |
+
tokens_input,
|
337 |
+
min_length=80,
|
338 |
+
max_length=150,
|
339 |
+
length_penalty=20,
|
340 |
+
num_beams=2,
|
341 |
+
)
|
342 |
+
summary_gen = tokenizer.decode(
|
343 |
+
summary_ids[0], skip_special_tokens=True
|
344 |
+
)
|
345 |
+
summary.append(summary_gen)
|
346 |
+
del model, tokenizer
|
347 |
+
outputdf["summary"] = summary
|
348 |
+
|
349 |
+
if classification:
|
350 |
+
themePipe = classify_theme()
|
351 |
+
classes = []
|
352 |
+
classesUnlabel = []
|
353 |
+
classesUnlabelZero = []
|
354 |
+
for x in stqdm(
|
355 |
+
text, desc="Assigning Themes ...", total=len(text), colour="red"
|
356 |
+
):
|
357 |
+
output = themePipe(x)[0][0]["label"]
|
358 |
+
classes.append(output)
|
359 |
+
score = round(themePipe(x)[0][0]["score"], 2)
|
360 |
+
if score <= treshold:
|
361 |
+
onelineoutput=oneline.predict(x)[0]
|
362 |
+
|
363 |
+
print("hit")
|
364 |
+
time.sleep(SLEEP)
|
365 |
+
|
366 |
+
classesUnlabel.append(
|
367 |
+
assignHF(
|
368 |
+
bot=bot,
|
369 |
+
what="theme",
|
370 |
+
to=onelineoutput
|
371 |
+
old=themes,
|
372 |
+
)
|
373 |
+
)
|
374 |
+
classesUnlabelZero.append(
|
375 |
+
assignZeroShot(
|
376 |
+
zero=zeroline, to=onelineoutput, old=themes
|
377 |
+
)
|
378 |
+
)
|
379 |
+
|
380 |
+
else:
|
381 |
+
classesUnlabel.append("")
|
382 |
+
classesUnlabelZero.append("")
|
383 |
+
outputdf["Review Theme"] = classes
|
384 |
+
outputdf["Review Theme-issue-new"] = classesUnlabel
|
385 |
+
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
386 |
+
cleanMemory(themePipe)
|
387 |
+
|
388 |
+
if sub_theme:
|
389 |
+
subThemePipe = classify_sub_theme()
|
390 |
+
classes = []
|
391 |
+
classesUnlabelZero = []
|
392 |
+
|
393 |
+
for x in stqdm(
|
394 |
+
text,
|
395 |
+
desc="Assigning Subthemes ...",
|
396 |
+
total=len(text),
|
397 |
+
colour="green",
|
398 |
+
):
|
399 |
+
output = subThemePipe(x)[0][0]["label"]
|
400 |
+
classes.append(output)
|
401 |
+
score = round(subThemePipe(x)[0][0]["score"], 2)
|
402 |
+
if score <= treshold:
|
403 |
+
onelineoutput=oneline.predict(x)[0]
|
404 |
+
|
405 |
+
time.sleep(SLEEP)
|
406 |
+
print("hit")
|
407 |
+
classesUnlabel.append(
|
408 |
+
assignHF(
|
409 |
+
bot=bot,
|
410 |
+
what="subtheme",
|
411 |
+
to=onelineoutput,
|
412 |
+
old=subthemes,
|
413 |
+
)
|
414 |
+
)
|
415 |
+
classesUnlabelZero.append(
|
416 |
+
assignZeroShot(
|
417 |
+
zero=zeroline,
|
418 |
+
to=onelineoutput,
|
419 |
+
old=subthemes,
|
420 |
+
)
|
421 |
+
)
|
422 |
+
|
423 |
+
else:
|
424 |
+
classesUnlabel.append("")
|
425 |
+
classesUnlabelZero.append("")
|
426 |
+
|
427 |
+
outputdf["Review SubTheme"] = classes
|
428 |
+
outputdf["Review SubTheme-issue-new"] = classesUnlabel
|
429 |
+
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
430 |
+
|
431 |
+
cleanMemory(subThemePipe)
|
432 |
+
|
433 |
+
csv = convert_df(outputdf)
|
434 |
+
st.download_button(
|
435 |
+
label="Download output as CSV",
|
436 |
+
data=csv,
|
437 |
+
file_name=f"{summarizer_option}_{date}_df.csv",
|
438 |
+
mime="text/csv",
|
439 |
+
use_container_width=True,
|
440 |
+
)
|
441 |
+
|
442 |
+
if summarizer_option == "t5-one-line-summary":
|
443 |
+
if summary_yes:
|
444 |
+
model = SimpleT5()
|
445 |
+
load_one_line_summarizer(model=model)
|
446 |
+
|
447 |
+
summary = []
|
448 |
+
for x in stqdm(range(len(text))):
|
449 |
+
if cancel_button3.button("Cancel", key=x):
|
450 |
+
del model
|
451 |
+
break
|
452 |
+
try:
|
453 |
+
summary.append(model.predict(text[x])[0])
|
454 |
+
except:
|
455 |
+
pass
|
456 |
+
outputdf["summary"] = summary
|
457 |
+
del model
|
458 |
+
|
459 |
+
if classification:
|
460 |
+
themePipe = classify_theme()
|
461 |
+
classes = []
|
462 |
+
classesUnlabel = []
|
463 |
+
classesUnlabelZero = []
|
464 |
+
for x in stqdm(
|
465 |
+
text, desc="Assigning Themes ...", total=len(text), colour="red"
|
466 |
+
):
|
467 |
+
output = themePipe(x)[0][0]["label"]
|
468 |
+
classes.append(output)
|
469 |
+
score = round(themePipe(x)[0][0]["score"], 2)
|
470 |
+
if score <= treshold:
|
471 |
+
onelineoutput=oneline.predict(x)[0]
|
472 |
+
|
473 |
+
time.sleep(SLEEP)
|
474 |
+
|
475 |
+
print("hit")
|
476 |
+
classesUnlabel.append(
|
477 |
+
assignHF(
|
478 |
+
bot=bot,
|
479 |
+
what="theme",
|
480 |
+
to=onelineoutput,
|
481 |
+
old=themes,
|
482 |
+
)
|
483 |
+
)
|
484 |
+
classesUnlabelZero.append(
|
485 |
+
assignZeroShot(
|
486 |
+
zero=zeroline, to=onelineoutput, old=themes
|
487 |
+
)
|
488 |
+
)
|
489 |
+
|
490 |
+
else:
|
491 |
+
classesUnlabel.append("")
|
492 |
+
classesUnlabelZero.append("")
|
493 |
+
outputdf["Review Theme"] = classes
|
494 |
+
outputdf["Review Theme-issue-new"] = classesUnlabel
|
495 |
+
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
496 |
+
|
497 |
+
if sub_theme:
|
498 |
+
subThemePipe = classify_sub_theme()
|
499 |
+
classes = []
|
500 |
+
classesUnlabelZero = []
|
501 |
+
|
502 |
+
for x in stqdm(
|
503 |
+
text,
|
504 |
+
desc="Assigning Subthemes ...",
|
505 |
+
total=len(text),
|
506 |
+
colour="green",
|
507 |
+
):
|
508 |
+
output = subThemePipe(x)[0][0]["label"]
|
509 |
+
classes.append(output)
|
510 |
+
score = round(subThemePipe(x)[0][0]["score"], 2)
|
511 |
+
if score <= treshold:
|
512 |
+
print("hit")
|
513 |
+
onelineoutput=oneline.predict(x)[0]
|
514 |
+
|
515 |
+
time.sleep(SLEEP)
|
516 |
+
classesUnlabel.append(
|
517 |
+
assignHF(
|
518 |
+
bot=bot,
|
519 |
+
what="subtheme",
|
520 |
+
to=onelineoutput,
|
521 |
+
old=subthemes,
|
522 |
+
)
|
523 |
+
)
|
524 |
+
classesUnlabelZero.append(
|
525 |
+
assignZeroShot(
|
526 |
+
zero=zeroline,
|
527 |
+
to=onelineoutput,
|
528 |
+
old=subthemes,
|
529 |
+
)
|
530 |
+
)
|
531 |
+
|
532 |
+
else:
|
533 |
+
classesUnlabel.append("")
|
534 |
+
classesUnlabelZero.append("")
|
535 |
+
|
536 |
+
outputdf["Review SubTheme"] = classes
|
537 |
+
outputdf["Review SubTheme-issue-new"] = classesUnlabel
|
538 |
+
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
539 |
+
|
540 |
+
cleanMemory(subThemePipe)
|
541 |
+
|
542 |
+
csv = convert_df(outputdf)
|
543 |
+
st.download_button(
|
544 |
+
label="Download output as CSV",
|
545 |
+
data=csv,
|
546 |
+
file_name=f"{summarizer_option}_{date}_df.csv",
|
547 |
+
mime="text/csv",
|
548 |
+
use_container_width=True,
|
549 |
+
)
|
550 |
+
|
551 |
+
except KeyError as e:
|
552 |
+
st.error(
|
553 |
+
"Please Make sure that your data must have a column named text",
|
554 |
+
icon="π¨",
|
555 |
+
)
|
556 |
+
st.info("Text column must have amazon reviews", icon="βΉοΈ")
|
557 |
+
# st.exception(e)
|
558 |
+
|
559 |
+
except BaseException as e:
|
560 |
+
logging.exception("An exception was occurred")
|