ashika00 commited on
Commit
e53f2d3
·
verified ·
1 Parent(s): 98960cc

requirements.txt

Browse files

Pillow==10.1.0
timm==0.9.10
torch==2.1.2
torchvision==0.16.2
transformers==4.36.0
sentencepiece==0.1.99
opencv-python
gradio
peft

Files changed (1) hide show
  1. app.py +335 -0
app.py ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # encoding: utf-8
3
+
4
+ import timm
5
+ import gradio as gr
6
+ from PIL import Image
7
+ import traceback
8
+ import re
9
+ import torch
10
+ import argparse
11
+ from transformers import AutoModel, AutoTokenizer
12
+
13
+ # Suppress FutureWarnings
14
+ import warnings
15
+ warnings.filterwarnings("ignore", category=FutureWarning)
16
+
17
+ # README, How to run demo on different devices
18
+ # For CPU usage, you can simply run:
19
+ # python app.py
20
+
21
+ # Argparser
22
+ parser = argparse.ArgumentParser(description='Demo Application Configuration')
23
+ parser.add_argument('--device', type=str, default='cpu', choices=['cpu'], help='Device to run the model on. Currently only "cpu" is supported.')
24
+ parser.add_argument('--dtype', type=str, default='fp32', choices=['fp32'], help='Data type for model computations. "fp32" is standard for CPU.')
25
+ args = parser.parse_args()
26
+
27
+ device = args.device
28
+
29
+ # Since we're using CPU, set dtype to float32
30
+ if args.dtype == 'fp32':
31
+ dtype = torch.float32
32
+ else:
33
+ dtype = torch.float32 # Fallback to float32 if an unsupported dtype is somehow passed
34
+
35
+ # Load model
36
+ model_path = 'openbmb/MiniCPM-V-2'
37
+
38
+ try:
39
+ print("Loading model...")
40
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(device=device, dtype=dtype)
41
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
42
+ print("Model loaded successfully.")
43
+ except Exception as e:
44
+ print(f"Error loading model: {e}")
45
+ traceback.print_exc()
46
+ exit(1)
47
+
48
+ model.eval()
49
+
50
+ ERROR_MSG = "Error, please retry"
51
+ model_name = 'MiniCPM-V 2.0'
52
+
53
+ # Define UI components parameters
54
+ form_radio = {
55
+ 'choices': ['Beam Search', 'Sampling'],
56
+ 'value': 'Sampling',
57
+ 'interactive': True,
58
+ 'label': 'Decode Type'
59
+ }
60
+
61
+ # Beam Search Parameters
62
+ num_beams_slider = {
63
+ 'minimum': 1, # Changed minimum from 0 to 1 as 0 beams doesn't make sense
64
+ 'maximum': 10, # Increased maximum for more flexibility
65
+ 'value': 3,
66
+ 'step': 1,
67
+ 'interactive': True,
68
+ 'label': 'Num Beams'
69
+ }
70
+ repetition_penalty_slider = {
71
+ 'minimum': 0.5, # Changed minimum to a reasonable value
72
+ 'maximum': 3.0,
73
+ 'value': 1.2,
74
+ 'step': 0.01,
75
+ 'interactive': True,
76
+ 'label': 'Repetition Penalty'
77
+ }
78
+
79
+ # Sampling Parameters
80
+ repetition_penalty_slider2 = {
81
+ 'minimum': 0.5,
82
+ 'maximum': 3.0,
83
+ 'value': 1.05,
84
+ 'step': 0.01,
85
+ 'interactive': True,
86
+ 'label': 'Repetition Penalty'
87
+ }
88
+ max_new_tokens_slider = {
89
+ 'minimum': 1,
90
+ 'maximum': 4096,
91
+ 'value': 1024,
92
+ 'step': 1,
93
+ 'interactive': True,
94
+ 'label': 'Max New Tokens'
95
+ }
96
+
97
+ top_p_slider = {
98
+ 'minimum': 0.1, # Avoid extreme low values
99
+ 'maximum': 1.0,
100
+ 'value': 0.8,
101
+ 'step': 0.05,
102
+ 'interactive': True,
103
+ 'label': 'Top P'
104
+ }
105
+ top_k_slider = {
106
+ 'minimum': 10, # Avoid extreme low values
107
+ 'maximum': 200,
108
+ 'value': 100,
109
+ 'step': 1,
110
+ 'interactive': True,
111
+ 'label': 'Top K'
112
+ }
113
+ temperature_slider = {
114
+ 'minimum': 0.1, # Avoid extreme low values
115
+ 'maximum': 2.0,
116
+ 'value': 0.7,
117
+ 'step': 0.05,
118
+ 'interactive': True,
119
+ 'label': 'Temperature'
120
+ }
121
+
122
+ def create_component(params, comp='Slider'):
123
+ """
124
+ Utility function to create Gradio UI components based on parameters.
125
+ """
126
+ if comp == 'Slider':
127
+ return gr.Slider(
128
+ minimum=params['minimum'],
129
+ maximum=params['maximum'],
130
+ value=params['value'],
131
+ step=params['step'],
132
+ interactive=params['interactive'],
133
+ label=params['label']
134
+ )
135
+ elif comp == 'Radio':
136
+ return gr.Radio(
137
+ choices=params['choices'],
138
+ value=params['value'],
139
+ interactive=params['interactive'],
140
+ label=params['label']
141
+ )
142
+ elif comp == 'Button':
143
+ return gr.Button(
144
+ value=params['value'],
145
+ interactive=True
146
+ )
147
+
148
+ def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
149
+ """
150
+ Function to handle the chat interaction.
151
+ """
152
+ print("Entering chat function...")
153
+ default_params = {"num_beams": 3, "repetition_penalty": 1.2, "max_new_tokens": 1024}
154
+ if params is None:
155
+ params = default_params
156
+ if img is None:
157
+ return -1, "Error, invalid image, please upload a new image", None, None
158
+ try:
159
+ image = img.convert('RGB')
160
+ answer, context, _ = model.chat(
161
+ image=image,
162
+ msgs=msgs,
163
+ context=None,
164
+ tokenizer=tokenizer,
165
+ **params
166
+ )
167
+ # Clean up the answer text
168
+ res = re.sub(r'(<box>.*</box>)', '', answer)
169
+ res = res.replace('<ref>', '').replace('</ref>', '').replace('<box>', '').replace('</box>', '')
170
+ answer = res
171
+ return -1, answer, None, None
172
+ except Exception as err:
173
+ print(err)
174
+ traceback.print_exc()
175
+ return -1, ERROR_MSG, None, None
176
+
177
+ def upload_img(image, _chatbot, _app_session):
178
+ """
179
+ Function to handle image uploads.
180
+ """
181
+ print("Uploading image...")
182
+ try:
183
+ image = Image.fromarray(image)
184
+ _app_session['sts'] = None
185
+ _app_session['ctx'] = []
186
+ _app_session['img'] = image
187
+ _chatbot.append(('', 'Image uploaded successfully, I am ready to take up your queries'))
188
+ print("Image uploaded successfully.")
189
+ return _chatbot, _app_session
190
+ except Exception as e:
191
+ print(f"Error uploading image: {e}")
192
+ traceback.print_exc()
193
+ return _chatbot, _app_session
194
+
195
+ def respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
196
+ """
197
+ Function to handle user input and generate responses.
198
+ """
199
+ print("Respond function called.")
200
+ if _app_cfg.get('ctx', None) is None:
201
+ _chat_bot.append((_question, 'Please upload an image to detect'))
202
+ return '', _chat_bot, _app_cfg
203
+
204
+ _context = _app_cfg['ctx'].copy()
205
+ if _context:
206
+ _context.append({"role": "user", "content": _question})
207
+ else:
208
+ _context = [{"role": "user", "content": _question}]
209
+ print('<User>:', _question)
210
+
211
+ if params_form == 'Beam Search':
212
+ params = {
213
+ 'sampling': False,
214
+ 'num_beams': num_beams,
215
+ 'repetition_penalty': repetition_penalty,
216
+ "max_new_tokens": 896
217
+ }
218
+ else:
219
+ params = {
220
+ 'sampling': True,
221
+ 'top_p': top_p,
222
+ 'top_k': top_k,
223
+ 'temperature': temperature,
224
+ 'repetition_penalty': repetition_penalty_2,
225
+ "max_new_tokens": 896
226
+ }
227
+ code, _answer, _, sts = chat(_app_cfg['img'], _context, None, params)
228
+ print('<Assistant>:', _answer)
229
+
230
+ _context.append({"role": "assistant", "content": _answer})
231
+ _chat_bot.append((_question, _answer))
232
+ if code == 0:
233
+ _app_cfg['ctx'] = _context
234
+ _app_cfg['sts'] = sts
235
+ return '', _chat_bot, _app_cfg
236
+
237
+ def regenerate_button_clicked(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
238
+ """
239
+ Function to handle the regeneration of the last assistant response.
240
+ """
241
+ print("Regenerate button clicked.")
242
+ if len(_chat_bot) <= 1:
243
+ _chat_bot.append(('Regenerate', 'No question for regeneration.'))
244
+ return '', _chat_bot, _app_cfg
245
+ elif _chat_bot[-1][0] == 'Regenerate':
246
+ return '', _chat_bot, _app_cfg
247
+ else:
248
+ _question = _chat_bot[-1][0]
249
+ _chat_bot = _chat_bot[:-1]
250
+ _app_cfg['ctx'] = _app_cfg['ctx'][:-2]
251
+ return respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature)
252
+
253
+ # Building the Gradio Interface
254
+ with gr.Blocks() as demo:
255
+ with gr.Row():
256
+ with gr.Column(scale=1, min_width=300):
257
+ # Decode Type Selection
258
+ params_form = create_component(form_radio, comp='Radio')
259
+
260
+ # Beam Search Settings
261
+ with gr.Accordion("Beam Search"):
262
+ num_beams = create_component(num_beams_slider)
263
+ repetition_penalty = create_component(repetition_penalty_slider)
264
+
265
+ # Sampling Settings
266
+ with gr.Accordion("Sampling"):
267
+ top_p = create_component(top_p_slider)
268
+ top_k = create_component(top_k_slider)
269
+ temperature = create_component(temperature_slider)
270
+ repetition_penalty_2 = create_component(repetition_penalty_slider2)
271
+
272
+ # Regenerate Button
273
+ regenerate = create_component({'value': 'Regenerate'}, comp='Button')
274
+
275
+ with gr.Column(scale=3, min_width=500):
276
+ # Application State
277
+ app_session = gr.State({'sts': None, 'ctx': None, 'img': None})
278
+
279
+ # Image Upload Component
280
+ bt_pic = gr.Image(label="Upload an image to start")
281
+
282
+ # Chatbot Display
283
+ chat_bot = gr.Chatbot(label="Ask anything about the image")
284
+
285
+ # Text Input for User Messages
286
+ txt_message = gr.Textbox(label="Input text")
287
+
288
+ # Define Actions
289
+ regenerate.click(
290
+ regenerate_button_clicked,
291
+ [
292
+ txt_message,
293
+ chat_bot,
294
+ app_session,
295
+ params_form,
296
+ num_beams,
297
+ repetition_penalty,
298
+ repetition_penalty_2,
299
+ top_p,
300
+ top_k,
301
+ temperature
302
+ ],
303
+ [txt_message, chat_bot, app_session]
304
+ )
305
+
306
+ txt_message.submit(
307
+ respond,
308
+ [
309
+ txt_message,
310
+ chat_bot,
311
+ app_session,
312
+ params_form,
313
+ num_beams,
314
+ repetition_penalty,
315
+ repetition_penalty_2,
316
+ top_p,
317
+ top_k,
318
+ temperature
319
+ ],
320
+ [txt_message, chat_bot, app_session]
321
+ )
322
+
323
+ bt_pic.upload(
324
+ lambda: None,
325
+ None,
326
+ chat_bot,
327
+ queue=False
328
+ ).then(
329
+ upload_img,
330
+ inputs=[bt_pic, chat_bot, app_session],
331
+ outputs=[chat_bot, app_session]
332
+ )
333
+
334
+ # Launch the Gradio App with share=True for testing
335
+ demo.launch(share=True, debug=True)