import os.path import time as reqtime import datetime from pytz import timezone import torch import spaces import gradio as gr from x_transformer_1_23_2 import * import random import tqdm import pprint import io from midi_to_colab_audio import midi_to_colab_audio import TMIDIX import matplotlib.pyplot as plt in_space = os.getenv("SYSTEM") == "spaces" # ================================================================================================= @spaces.GPU def GenerateMusic(): print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('Loading model...') SEQ_LEN = 2048 PAD_IDX = 780 DEVICE = 'cpu' # 'cuda' # instantiate the model model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 1024, depth = 32, heads = 16, attn_flash = True) ) model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX) model.to(DEVICE) print('=' * 70) print('Loading model checkpoint...') model.load_state_dict( torch.load('Descriptive_Music_Transformer_Trained_Model_20631_steps_0.3218_loss_0.8947_acc.pth', map_location=DEVICE)) print('=' * 70) model.eval() if DEVICE == 'cpu': dtype = torch.bfloat16 else: dtype = torch.bfloat16 ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) print('Done!') print('=' * 70) input_num_tokens = 1024+512 print('-' * 70) #=============================================================================== print('=' * 70) print('Loading helper functions...') def txt2tokens(txt): return [ord(char)+648 if 0 < ord(char) < 128 else 0+648 for char in txt.lower()] def tokens2txt(tokens): return [chr(tok-648) for tok in tokens if 0+648 < tok < 128+648 ] def pprint_to_string(obj, compact=True): output = io.StringIO() pprint.pprint(obj, stream=output, compact=compact) return output.getvalue() print('=' * 70) print('Generating...') #@title Standard Text-to-Music Generator #@markdown Generation settings number_of_tokens_to_generate = input_num_tokens number_of_batches_to_generate = 1 #@param {type:"slider", min:1, max:16, step:1} temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05} print('=' * 70) print('Descriptive Music Transformer Model Generator') print('=' * 70) outy = [777] torch.cuda.empty_cache() inp = [outy] * number_of_batches_to_generate inp = torch.LongTensor(inp).cpu() with ctx: out = model.generate(inp, number_of_tokens_to_generate, temperature=temperature, return_prime=True, verbose=False) out0 = out.tolist() print('=' * 70) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') print('=' * 70) out1 = out0[0] print('Sample INTs', out1[:12]) print('=' * 70) descr = ''.join(tokens2txt(out1)).split('. ') descr1 = descr[0].capitalize() descr2 = descr[1].capitalize() generated_song_description = str(pprint_to_string(descr1).replace(" '", "").replace("'", "")[1:-2] +'.\n\n' + pprint_to_string(descr2).replace("'", "").replace(" '", "")[1:-2]) if len(out1) != 0: song = out1 song_f = [] time = 0 dur = 0 vel = 90 pitch = 0 pat = 0 channel = 0 for ss in song: if 0 < ss < 128: time += (ss * 32) if 128 < ss < 256: dur = (ss-128) * 32 if 256 <= ss <= 384: pat = (ss-256) channel = pat // 8 if channel == 9: channel = 15 if channel == 16: channel = 9 if 384 < ss < 640: pitch = (ss-384) % 128 if 640 <= ss < 648: vel = ((ss-640)+1) * 15 song_f.append(['note', time, dur, channel, pitch, vel, pat]) song_f, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f) fn1 = "Descriptive-Music-Transformer-Composition" detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, output_signature = 'Descriptive Music Transformer', output_file_name = fn1, track_name='Project Los Angeles', list_of_MIDI_patches=patches ) new_fn = fn1+'.mid' audio = midi_to_colab_audio(new_fn, soundfont_path=soundfont, sample_rate=16000, volume_scale=10, output_for_gradio=True ) print('Done!') print('=' * 70) #======================================================== output_midi_title = str(fn1).replace('-', ' ') output_midi_summary = str(generated_song_description) output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) print('Output MIDI file name:', output_midi) print('Output MIDI title:', output_midi_title) print('Output MIDI summary:', output_midi_summary) print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot # ================================================================================================= if __name__ == "__main__": PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" app = gr.Blocks() with app: gr.Markdown("