import gradio as gr from gradio_huggingfacehub_search import HuggingfaceHubSearch import nbformat as nbf from huggingface_hub import HfApi import logging from utils.notebook_utils import ( replace_wildcards, load_json_files_from_folder, ) from utils.api_utils import get_compatible_libraries, get_first_rows, get_splits from dotenv import load_dotenv import os from nbconvert import HTMLExporter import uuid import pandas as pd load_dotenv() URL = "https://huggingface.co/spaces/asoria/auto-notebook-creator" HF_TOKEN = os.getenv("HF_TOKEN") assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables" NOTEBOOKS_REPOSITORY = os.getenv("NOTEBOOKS_REPOSITORY") assert ( NOTEBOOKS_REPOSITORY is not None ), "You need to set NOTEBOOKS_REPOSITORY in your environment variables" logging.basicConfig(level=logging.INFO) # TODO: Validate notebook templates format folder_path = "notebooks" notebook_templates = load_json_files_from_folder(folder_path) logging.info(f"Available notebooks {notebook_templates.keys()}") def create_notebook_file(cells, notebook_name): nb = nbf.v4.new_notebook() nb["cells"] = [ nbf.v4.new_code_cell( cmd["source"] if isinstance(cmd["source"], str) else "\n".join(cmd["source"]) ) if cmd["cell_type"] == "code" else nbf.v4.new_markdown_cell(cmd["source"]) for cmd in cells ] with open(notebook_name, "w") as f: nbf.write(nb, f) logging.info(f"Notebook {notebook_name} created successfully") html_exporter = HTMLExporter() html_data, _ = html_exporter.from_notebook_node(nb) return html_data def longest_string_column(df): longest_col = None max_length = 0 for col in df.select_dtypes(include=["object", "string"]): max_col_length = df[col].str.len().max() if max_col_length > max_length: max_length = max_col_length longest_col = col return longest_col def _push_to_hub( dataset_id, notebook_file, ): logging.info(f"Pushing notebook to hub: {dataset_id} on file {notebook_file}") notebook_name = notebook_file.split("/")[-1] api = HfApi(token=HF_TOKEN) try: logging.info(f"About to push {notebook_file} - {dataset_id}") api.upload_file( path_or_fileobj=notebook_file, path_in_repo=notebook_name, repo_id=NOTEBOOKS_REPOSITORY, repo_type="dataset", ) except Exception as e: logging.info("Failed to push notebook", e) raise def generate_cells(dataset_id, notebook_title): logging.info(f"Generating {notebook_title} notebook for dataset {dataset_id}") cells = notebook_templates[notebook_title]["notebook_template"] notebook_type = notebook_templates[notebook_title]["notebook_type"] dataset_types = notebook_templates[notebook_title]["dataset_types"] compatible_library = notebook_templates[notebook_title]["compatible_library"] try: libraries = get_compatible_libraries(dataset_id) if not libraries: logging.error( f"Dataset not compatible with any loading library (pandas/datasets)" ) return ( "", "## ❌ This dataset is not compatible with pandas or datasets libraries ❌", ) library_code = next( ( lib for lib in libraries.get("libraries", []) if lib["library"] == compatible_library ), None, ) if not library_code: logging.error(f"Dataset not compatible with {compatible_library} library") return ( "", f"## ❌ This dataset is not compatible with '{compatible_library}' library ❌", ) first_config_loading_code = library_code["loading_codes"][0] first_code = first_config_loading_code["code"] first_config = first_config_loading_code["config_name"] first_split = get_splits(dataset_id, first_config)[0]["split"] first_rows = get_first_rows(dataset_id, first_config, first_split) except Exception as err: gr.Error("Unable to retrieve dataset info from HF Hub.") logging.error(f"Failed to fetch compatible libraries: {err}") return "", f"## ❌ This dataset is not accessible from the Hub {err}❌" df = pd.DataFrame.from_dict(first_rows).sample(frac=1).head(3) longest_col = longest_string_column(df) html_code = f"" wildcards = [ "{dataset_name}", "{first_code}", "{html_code}", "{longest_col}", "{first_config}", "{first_split}", ] replacements = [ dataset_id, first_code, html_code, longest_col, first_config, first_split, ] has_numeric_columns = len(df.select_dtypes(include=["number"]).columns) > 0 has_categoric_columns = len(df.select_dtypes(include=["object"]).columns) > 0 valid_dataset = False if "text" in dataset_types and has_categoric_columns: valid_dataset = True if "numeric" in dataset_types and has_numeric_columns: valid_dataset = True if not valid_dataset: logging.error( f"Dataset does not have the column types needed for this notebook which expects to have {dataset_types} data types." ) return ( "", f"## ❌ This dataset does not have {dataset_types} columns, which are required for this notebook type ❌", ) cells = replace_wildcards( cells, wildcards, replacements, has_numeric_columns, has_categoric_columns ) notebook_name = ( f"{dataset_id.replace('/', '-')}-{notebook_type}-{uuid.uuid4()}.ipynb" ) html_content = create_notebook_file(cells, notebook_name=notebook_name) _push_to_hub(dataset_id, notebook_name) notebook_link = f"https://colab.research.google.com/#fileId=https%3A//huggingface.co/datasets/{NOTEBOOKS_REPOSITORY}/blob/main/{notebook_name}" return ( html_content, f"[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)]({notebook_link})", ) css = """ .prose :where(pre):not(:where([class~=not-prose],[class~=not-prose] *)) { background-color: var(--table-even-background-fill); /* Fix dark mode */ } """ with gr.Blocks(css=css) as demo: gr.Markdown("# 🤖 Dataset notebook creator 🕵️") gr.Markdown( f"[![Notebooks: {len(notebook_templates)}](https://img.shields.io/badge/Notebooks-{len(notebook_templates)}-blue.svg)]({URL}/tree/main/notebooks)" ) gr.Markdown( f"[![Contribute a Notebook](https://img.shields.io/badge/Contribute%20a%20Notebook-8A2BE2)]({URL}/blob/main/CONTRIBUTING.md)" ) text_input = gr.Textbox(label="Suggested notebook type", visible=False) gr.Markdown("## 1. Select a dataset from Huggingface Hub") dataset_name = HuggingfaceHubSearch( label="Hub Dataset ID", placeholder="Search for dataset id on Huggingface", search_type="dataset", value="", ) dataset_samples = gr.Examples( examples=[ [ "scikit-learn/iris", "Try this dataset for Exploratory Data Analysis (EDA)", ], [ "infinite-dataset-hub/GlobaleCuisineRecipes", "Try this dataset for Text Embeddings", ], [ "infinite-dataset-hub/GlobalBestSellersSummaries", "Try this dataset for Retrieval-augmented generation (RAG)", ], [ "asoria/english-quotes-text", "Try this dataset for Supervised fine-tuning (SFT)", ], ], inputs=[dataset_name, text_input], cache_examples=False, ) gr.Markdown("## 2. Preview the dataset") @gr.render(inputs=dataset_name) def embed(name): if not name: return gr.Markdown("### No dataset provided") html_code = f""" """ return gr.HTML(value=html_code, elem_classes="viewer") gr.Markdown("## 3. Select the type of notebook you want to generate") notebook_type = gr.Dropdown( choices=notebook_templates.keys(), label="Notebook type", value="Text Embeddings", ) generate_button = gr.Button("Generate Notebook", variant="primary") gr.Markdown("## 4. Notebook result + Open in Colab") go_to_notebook = gr.Markdown() code_component = gr.HTML() generate_button.click( generate_cells, inputs=[dataset_name, notebook_type], outputs=[code_component, go_to_notebook], ) gr.Markdown( "🚧 Note: Some code may not be compatible with datasets that contain binary data or complex structures. 🚧" ) demo.launch()