File size: 18,641 Bytes
95b880a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "23e98a8a-7128-4f35-ba1c-ff514ed462e0",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Install All the Required Dependencies\n",
    "#!pip3 install torch torchvision torchaudio\n",
    "#!pip install transformers ipywidgets gradio --upgrade\n",
    "#!pip install --upgrade transformers accelerate\n",
    "#!pip install --upgrade gradio\n",
    "#!pip install nltk\n",
    "#!pip install jiwer\n",
    "#!pip install sentencepiece\n",
    "#!pip install sacremoses\n",
    "#!pip install soundfile\n",
    "#!pip install librosa numpy jiwer nltk\n",
    "#!pip install --upgrade pip \n",
    "#!pip install huggingface_hub"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "0d2a7d3a-8c2c-4134-a79f-a3b7b1747874",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2024-12-20 20:13:51.723870: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
      "2024-12-20 20:13:51.767697: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
      "2024-12-20 20:13:51.767728: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
      "2024-12-20 20:13:51.768839: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
      "2024-12-20 20:13:51.775965: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
      "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
      "2024-12-20 20:13:52.795860: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
     ]
    }
   ],
   "source": [
    "#Import Required Libraries\n",
    "from transformers import pipeline\n",
    "from jiwer import wer\n",
    "from transformers import VitsModel, AutoTokenizer, set_seed\n",
    "import torch\n",
    "import soundfile as sf\n",
    "import librosa\n",
    "from scipy.spatial.distance import euclidean\n",
    "import numpy as np\n",
    "import string\n",
    "import os\n",
    "from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction\n",
    "from nltk.translate.meteor_score import meteor_score\n",
    "import string\n",
    "import numpy as np\n",
    "import librosa\n",
    "from scipy.spatial.distance import euclidean\n",
    "import string\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "e2bafb31-ecf6-44e4-b25a-24abfa75bed1",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['/home/jupyter-prof-adetiba/nltk_data', '/opt/tljh/user/nltk_data', '/opt/tljh/user/share/nltk_data', '/opt/tljh/user/lib/nltk_data', '/usr/share/nltk_data', '/usr/local/share/nltk_data', '/usr/lib/nltk_data', '/usr/local/lib/nltk_data']\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[nltk_data] Downloading package wordnet to /home/jupyter-prof-\n",
      "[nltk_data]     adetiba/nltk_data...\n",
      "[nltk_data]   Package wordnet is already up-to-date!\n",
      "[nltk_data] Downloading package omw-1.4 to /home/jupyter-prof-\n",
      "[nltk_data]     adetiba/nltk_data...\n",
      "[nltk_data]   Package omw-1.4 is already up-to-date!\n"
     ]
    }
   ],
   "source": [
    "import nltk\n",
    "nltk.download('wordnet')\n",
    "nltk.download('omw-1.4')  # Optional if using WordNet's multilingual features\n",
    "import nltk\n",
    "print(nltk.data.path)\n",
    "import nltk\n",
    "nltk.data.path.append('./nltk_data')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "10ceb8b4-fe4e-4a97-ac34-dce6a890455a",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Define all Utility Functions\n",
    "# Function to compute BLEU score\n",
    "def compute_bleu(reference_text, predicted_text):\n",
    "    \"\"\"\n",
    "    Computes the BLEU score for a single translation.\n",
    "    :param reference_text: The ground truth text (in Yoruba).\n",
    "    :param predicted_text: The machine-generated translation text (in Yoruba).\n",
    "    :return: BLEU score (float).\n",
    "    \"\"\"\n",
    "    print(\"The Reference Text = \", reference_text)\n",
    "    print(\"The Predicted Text = \",predicted_text)\n",
    "    # Tokenize the reference and predicted texts\n",
    "    reference_tokens = [reference_text.split()]  # Reference should be wrapped in a list\n",
    "    predicted_tokens = predicted_text.split()\n",
    "\n",
    "    # Add smoothing to handle cases with few n-gram matches\n",
    "    smoothing_function = SmoothingFunction().method1\n",
    "\n",
    "    # Compute BLEU score\n",
    "    bleu_score = sentence_bleu(reference_tokens, predicted_tokens, smoothing_function=smoothing_function)\n",
    "    #print(\"The Computed bleu_score in the Compute_Blue Fn = \",bleu_score)\n",
    "    return round(bleu_score,2)\n",
    "# Function to compute Word Error Rate (WER)\n",
    "def compute_wer(reference_text, predicted_text):\n",
    "    \"\"\"\n",
    "    Computes the Word Error Rate (WER) for a single translation.\n",
    "    :param reference_text: The ground truth text (in Yoruba).\n",
    "    :param predicted_text: The machine-generated translation text (in Yoruba).\n",
    "    :return: WER score (float).\n",
    "    \"\"\"\n",
    "    # Normalize text: lowercase and remove punctuation\n",
    "    reference_text = reference_text.lower().translate(str.maketrans('', '', string.punctuation))\n",
    "    predicted_text = predicted_text.lower().translate(str.maketrans('', '', string.punctuation))\n",
    "\n",
    "    # Compute WER\n",
    "    wer_score = wer(reference_text, predicted_text)\n",
    "\n",
    "    return round(wer_score,2)\n",
    "\n",
    "# Function to compute METEOR score\n",
    "def compute_meteor(reference_text, predicted_text):\n",
    "    \"\"\"\n",
    "    Computes the METEOR score for a single translation.\n",
    "    :param reference_text: The ground truth text (in Yoruba).\n",
    "    :param predicted_text: The machine-generated translation text (in Yoruba).\n",
    "    :return: METEOR score (float).\n",
    "    \"\"\"\n",
    "    # Normalize text: lowercase and remove punctuation\n",
    "    reference_text = reference_text.lower().translate(str.maketrans('', '', string.punctuation))\n",
    "    predicted_text = predicted_text.lower().translate(str.maketrans('', '', string.punctuation))\n",
    "\n",
    "    # Tokenize text into lists of words\n",
    "    reference_tokens = reference_text.split()\n",
    "    predicted_tokens = predicted_text.split()\n",
    "\n",
    "    # Compute METEOR score\n",
    "    meteor = meteor_score([reference_tokens], predicted_tokens)\n",
    "    \n",
    "    return round(meteor,2)\n",
    "\n",
    "# Function to compute Mel Cepstral Distance (MCD)\n",
    "def compute_mcd(ground_truth_audio_path, predicted_audio_path):\n",
    "    \"\"\"\n",
    "    Computes the Mel Cepstral Distance (MCD) between two audio files.\n",
    "    :param ground_truth_audio_path: Path to the ground truth audio file.\n",
    "    :param predicted_audio_path: Path to the predicted audio file.\n",
    "    :return: MCD score (float).\n",
    "    \"\"\"\n",
    "    # Load audio files\n",
    "    y_true, sr_true = librosa.load(ground_truth_audio_path, sr=16000)\n",
    "    y_pred, sr_pred = librosa.load(predicted_audio_path, sr=16000)\n",
    "\n",
    "    # Ensure the sampling rates match\n",
    "    assert sr_true == sr_pred, \"Sampling rates do not match between audio files.\"\n",
    "\n",
    "    # Compute MFCCs\n",
    "    mfcc_true = librosa.feature.mfcc(y=y_true, sr=sr_true, n_mfcc=13).T\n",
    "    mfcc_pred = librosa.feature.mfcc(y=y_pred, sr=sr_pred, n_mfcc=13).T\n",
    "\n",
    "    # Align the MFCC frames\n",
    "    min_frames = min(len(mfcc_true), len(mfcc_pred))\n",
    "    mfcc_true = mfcc_true[:min_frames]\n",
    "    mfcc_pred = mfcc_pred[:min_frames]\n",
    "\n",
    "    # Compute the Euclidean distance for each frame and average\n",
    "    mcd = 0.0\n",
    "    for i in range(min_frames):\n",
    "        mcd += euclidean(mfcc_true[i], mfcc_pred[i])\n",
    "    mcd = (10.0 / np.log(10)) * (mcd / min_frames)\n",
    "\n",
    "    return round(mcd,2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "69d64db9-b083-46ae-80ce-9616ba99183d",
   "metadata": {
    "editable": true,
    "slideshow": {
     "slide_type": ""
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "#Define Translation and Synthesis Function\n",
    "def translate_transformers(modelName, sourceLangText):\n",
    "    #results = translation_pipeline(input_text)\n",
    "    translation_pipeline = pipeline('translation_en_to_yo', model = modelName, max_length=500)\n",
    "    translated_text = translation_pipeline(sourceLangText) #translator(text)[0][\"translation_text\"]\n",
    "    translated_text_target = translated_text[0]['translation_text']\n",
    "    #reference_translations = \"awon apositeli, awon woli, awon ajinrere ati awon oluso agutan ati awon oluko.\" #'recorder_2024-01-13_11-24-41_453538.wav'#\"My name is Joy, I love reading\"\n",
    "   \n",
    "    #TTS for the translated_text_target\n",
    "    #TTS Exp1\n",
    "    ttsModel = VitsModel.from_pretrained(\"facebook/mms-tts-yor\")\n",
    "    tokenizer = AutoTokenizer.from_pretrained(\"facebook/mms-tts-yor\")\n",
    "    ttsInputs = tokenizer(translated_text_target, return_tensors=\"pt\")\n",
    "    set_seed(555)  # make deterministic\n",
    "    with torch.no_grad():\n",
    "        ttsOutput = ttsModel(**ttsInputs).waveform\n",
    "    #Convert the tensor to a numpy array\n",
    "    ttsWaveform = ttsOutput.numpy()[0]    \n",
    "    #Save the waveform to an audio file\n",
    "    #sf.write('output.wav', waveform, 22050)\n",
    "    sf.write('ttsOutput.wav', ttsWaveform, 16000)\n",
    "    \n",
    "    # Sample ground truth and predicted text2text translations for Clinical Text\n",
    "    #ground_truth_text = \"Àrùn jẹjẹrẹ ọmú jẹ́ ọ̀kan pàtàkì lára ohun tó ń ṣàkóbá fún ìlera gbogbo ènìyàn ní Nàìjíríà, ó sì jẹ́ ọ̀kan pàtàkì lára ohun tó ń fa ikú àwọn obìnrin tí àrùn jẹjẹrẹ ń pa lórílẹ̀-èdè náà.\"\n",
    "    #predicted_text = translated_text_target #\"<extra_id_0> breast cancer is a\"\n",
    "\n",
    "    # Sample ground truth and predicted text2text translations for News Text\n",
    "    #ground_truth_text = \"Wọ́n ní ìgbà àkọ́kọ́ nìyí tí irú ìwà ipá bẹ́ẹ̀ máa wáyé ní ìpínlẹ̀ Ondo.\"\n",
    "    #predicted_text = translated_text_target #\"<extra_id_0> breast cancer is a\"\n",
    "\n",
    "    # Sample ground truth and predicted text2text translations for Religion Text\n",
    "    ground_truth_text = \"Àwọn aposteli, àwọn wòlíì, àwọn ajíhìnrere, àwọn olùṣọ́-àgùntàn àti àwọn olùkọ́.\"\n",
    "    predicted_text = translated_text_target #\"<extra_id_0> breast cancer is a\"\n",
    "    \n",
    "    #Compute bleu_score\n",
    "    bleu_score = compute_bleu(ground_truth_text, predicted_text)\n",
    "    print(f\"Bleu Score (BLEU): {bleu_score:.2f}\")\n",
    "    \n",
    "    #Compute WER\n",
    "    wer_score = compute_wer(ground_truth_text, predicted_text)\n",
    "    print(f\"Word Error Rate (WER): {wer_score:.2f}\")\n",
    "\n",
    "    #Compute METEOR\n",
    "    meteor = compute_meteor(ground_truth_text, predicted_text)\n",
    "    print(f\"METEOR Score: {meteor:.2f}\")\n",
    "\n",
    "    # Paths to sample audio files for MCD computation in current directory\n",
    "    ground_truth_audio = os.path.join(os.getcwd(), \"gt_ttsOutput.wav\")\n",
    "    predicted_audio = os.path.join(os.getcwd(), \"ttsOutput.wav\")\n",
    "\n",
    "    # Compute Mel Cepstral Distance (MCD)\n",
    "    try:\n",
    "        mcd = compute_mcd(ground_truth_audio, predicted_audio)\n",
    "        print(f\"Mel Cepstral Distance (MCD): {mcd:.2f}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error computing MCD: {e}\")\n",
    "    \n",
    "    return translated_text_target,bleu_score,wer_score,meteor,mcd,'ttsOutput.wav'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "bbf259d6-922d-4f5c-9af1-cbd57158a814",
   "metadata": {
    "editable": true,
    "slideshow": {
     "slide_type": ""
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "#Define User Interface Function using Gradio and IPython Libraries\n",
    "import gradio as gr\n",
    "from IPython.display import Audio\n",
    "interface = gr.Interface(\n",
    "    fn=translate_transformers,\n",
    "    inputs=[\n",
    "        gr.Dropdown([\"Davlan/byt5-base-eng-yor-mt\", #Exp1\n",
    "                     \"Davlan/m2m100_418M-eng-yor-mt\", #Exp2\n",
    "                     \"Davlan/mbart50-large-eng-yor-mt\", #Exp3\n",
    "                     \"Davlan/mt5_base_eng_yor_mt\", #Exp4\n",
    "                     \"omoekan/opus-tatoeba-eng-yor\", #Exp5\n",
    "                     \"masakhane/afrimt5_en_yor_news\", #Exp6\n",
    "                     \"masakhane/afrimbart_en_yor_news\", #Exp7\n",
    "                     \"masakhane/afribyt5_en_yor_news\", #Exp8\n",
    "                     \"masakhane/byt5_en_yor_news\", #Exp9\n",
    "                     \"masakhane/mt5_en_yor_news\", #Exp10\n",
    "                     \"masakhane/mbart50_en_yor_news\", #Exp11\n",
    "                     \"masakhane/m2m100_418M_en_yor_news\", #Exp12\n",
    "                     \"masakhane/m2m100_418M_en_yor_rel_news\", #Exp13\n",
    "                     \"masakhane/m2m100_418M_en_yor_rel_news_ft\", #Exp14\n",
    "                     \"masakhane/m2m100_418M_en_yor_rel\", #Exp15\n",
    "                     \"dabagyan/menyo_en2yo\", #Exp16\n",
    "                     #\"facebook/nllb-200-distilled-600M\", #Exp17\n",
    "                     #\"facebook/nllb-200-3.3B\", #Exp18\n",
    "                     #\"facebook/nllb-200-1.3B\", #Exp19\n",
    "                     #\"facebook/nllb-200-distilled-1.3B\",  #Exp20\n",
    "                     #\"keithhon/nllb-200-3.3B\" #Exp21\n",
    "                     #\"CohereForAI/aya-101\" #Exp22\n",
    "                     \"facebook/m2m100_418M\", #Exp17\n",
    "                     #\"facebook/m2m100_1.2B\",#Exp18\n",
    "                     #\"facebook/m2m100-12B-avg-5-ckpt\", #Exp19\n",
    "                     \"google/mt5-base\", #Exp20\n",
    "                     \"google/byt5-large\" #Exp21\n",
    "                     ], \n",
    "                     label=\"Select Finetuned Eng2Yor Translation Model\"),\n",
    "        gr.Textbox(lines=2, placeholder=\"Enter English Text Here...\", label=\"English Text\")  \n",
    "    ],\n",
    "    #outputs = \"text\",\n",
    "    #outputs=outputs=[\"text\", \"text\"],#\"text\"\n",
    "    #outputs= gr.Textbox(value=\"text\", label=\"Translated Text\"),\n",
    "    outputs=[\n",
    "        gr.Textbox(value=\"text\", label=\"Translated Yoruba Text\"),\n",
    "        #gr.Textbox(value=\"text\", label=translated_text_actual),\n",
    "        gr.Textbox(value=\"number\", label=\"BLEU SCORE\"),\n",
    "        gr.Textbox(value=\"number\", label=\"WER(WORD ERROR RATE) SCORE - The Lower the Better\"),\n",
    "        gr.Textbox(value=\"number\", label=\"METEOR SCORE\"),\n",
    "        gr.Textbox(value=\"number\", label=\"MCD(MEL CESPRAL DISTANCE) SCORE\"),\n",
    "        gr.Audio(type=\"filepath\", label=\"Click to Generate Yoruba Speech from the Translated Text\")\n",
    "    ],\n",
    "    title=\"ASPMIR-MACHINE-TRANSLATION-TESTBED FOR LOW RESOURCED AFRICAN LANGUAGES\",\n",
    "    #gr.Markdown(\"**This Tool Allows Developers and Researchers to Carry Out Experiments on Low Resourced African Languages with State-of-the-Art NMT Finetuned Models.**\"),\n",
    "    description=\"{This Tool Allows Developers and Researchers to Carry Out Experiments on Low Resourced African Languages with State-of-the-Art Pretrained or Finetuned Models.}\"\n",
    ")\n",
    "#interface.launch(share=True)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "c3baee0f-fd85-4209-9d54-14451abd372a",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7860\n",
      "* Running on public URL: https://c18533aae56f5e43a5.gradio.live\n",
      "\n",
      "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"https://c18533aae56f5e43a5.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "if __name__ == \"__main__\":\n",
    "    interface.launch(share=True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}