File size: 10,736 Bytes
28758a3
e2ce2c6
28758a3
e2ce2c6
28758a3
e2ce2c6
28758a3
 
76016a4
f12d140
 
 
 
 
 
 
 
 
 
b013055
4fd8c80
969ba3a
f12d140
 
 
 
 
28758a3
f12d140
 
28758a3
f12d140
e2ce2c6
f12d140
e2ce2c6
76016a4
e2ce2c6
76016a4
 
e2ce2c6
 
f12d140
 
 
e2ce2c6
f12d140
 
 
e2ce2c6
f12d140
 
e2ce2c6
 
f12d140
 
 
e2ce2c6
f12d140
 
 
 
 
e2ce2c6
f12d140
e2ce2c6
76016a4
f12d140
 
 
 
76016a4
e2ce2c6
f12d140
 
 
 
28758a3
2df7aa9
 
ddaf851
a73a7bc
 
 
2df7aa9
a73a7bc
 
 
 
2df7aa9
 
a73a7bc
 
 
 
2df7aa9
 
 
a73a7bc
 
 
2df7aa9
 
 
a73a7bc
969ba3a
8bf0323
969ba3a
2df7aa9
 
a73a7bc
 
8bf0323
a73a7bc
 
2df7aa9
 
 
a73a7bc
2df7aa9
a73a7bc
4cdf80c
 
2df7aa9
4cdf80c
 
 
 
 
2df7aa9
 
 
4cdf80c
 
 
 
2df7aa9
 
4cdf80c
 
 
 
969ba3a
a73a7bc
 
2df7aa9
 
 
a73a7bc
 
 
2df7aa9
a73a7bc
7529434
969ba3a
2df7aa9
 
 
7529434
2df7aa9
 
 
7529434
 
 
 
 
 
 
969ba3a
 
 
 
2df7aa9
 
969ba3a
2df7aa9
 
969ba3a
7529434
 
 
 
 
2df7aa9
 
 
 
7529434
 
 
2df7aa9
 
 
 
 
 
 
 
 
7529434
ddaf851
 
a42464a
 
 
 
ddaf851
e2ce2c6
a73a7bc
e2ce2c6
c54f5d5
 
 
d0c8c26
e2ce2c6
 
c54f5d5
315bcc1
773081a
 
6fb4dc9
9448f40
4cdf80c
 
 
 
 
 
 
 
 
 
 
 
969ba3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54f5d5
 
 
a42464a
76016a4
 
 
 
 
c54f5d5
 
76016a4
c54f5d5
a42464a
f12d140
a42464a
9448f40
f12d140
76016a4
f12d140
 
a42464a
9448f40
f12d140
76016a4
4cdf80c
a42464a
 
 
 
 
 
f12d140
a42464a
4cdf80c
a42464a
4cdf80c
a42464a
4cdf80c
f12d140
a42464a
 
 
4cdf80c
a42464a
 
969ba3a
28758a3
ddaf851
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import gradio as gr
import os
from huggingface_hub import InferenceClient
from huggingface_hub.inference._generated.types.chat_completion import ChatCompletionStreamOutput

MODEL = "nomiChroma3.1"
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

def respond(
    message: str,
    chat_history: list[tuple[str, str]],
    max_tokens: int,
    temperature: float,
    top_p: float,
) -> tuple[list[tuple[str, str]], str]:
    """
    Generate a response and update chat history.
    Returns tuple of (new_history, None) to clear input box.
    """
    system_message = "You are a maritime legal assistant with expertise strictly in Indian maritime law. Provide detailed legal advice and information within word limit based on Indian maritime legal principles and regulations."
    
    messages = [{"role": "system", "content": system_message}]
    for user_msg, assistant_msg in chat_history:
        messages.extend([
            {"role": "user", "content": user_msg},
            {"role": "assistant", "content": assistant_msg}
        ])
    messages.append({"role": "user", "content": message})
    
    chat_history = chat_history + [(message, None)]
    response = ""
    
    try:
        for chunk in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            try:
                if isinstance(chunk, ChatCompletionStreamOutput):
                    content = chunk.choices[0].delta.content
                    if content:
                        response += content
                        chat_history[-1] = (message, response)
                        yield chat_history, ""
                    if chunk.choices[0].finish_reason == 'stop':
                        break
                elif isinstance(chunk, dict):
                    content = chunk.get('choices', [{}])[0].get('delta', {}).get('content')
                    if content:
                        response += content
                        chat_history[-1] = (message, response)
                        yield chat_history, ""
                    if chunk.get('choices', [{}])[0].get('finish_reason') == 'stop':
                        break
                elif isinstance(chunk, str) and chunk.strip():
                    response += chunk
                    chat_history[-1] = (message, response)
                    yield chat_history, ""
                    
            except Exception as e:
                print(f"Error processing chunk: {e}")
                continue

        if not response:
            chat_history[-1] = (message, "I apologize, but I couldn't generate a response. Please try again.")
        
        yield chat_history, ""

    except Exception as e:
        error_msg = f"An error occurred: {str(e)}"
        chat_history[-1] = (message, error_msg)
        yield chat_history, ""


# [Previous imports and respond function remain unchanged]

custom_css = """
    /* Global styles */
    .gradio-container {
        background-color: #1a365d !important;
        font-family: 'Inter', -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif !important;
    }
    /* Header styling */
    .header-container {
        text-align: center;
        padding: 1rem 0;
        margin-bottom: 1rem;
        border-bottom: 2px solid rgba(255, 255, 255, 0.1);
    }
    .header-title {
        color: #ffffff;
        font-size: 2rem;
        margin-bottom: 0.3rem;
        font-family: inherit;
    }
    .header-subtitle {
        color: #e6f3ff;
        font-size: 1rem;
        margin-bottom: 0.2rem;
        font-family: inherit;
    }
    /* Sidebar styling */
    .sidebar {
        background: #e6f3ff !important;
        border-radius: 8px !important;
        padding: 15px !important;
        border: 1px solid rgba(176, 226, 255, 0.2) !important;
        height: fit-content !important;
    }
    .sidebar-title {
        color: #1a365d !important;
        font-size: 1.1rem !important;
        margin-bottom: 0.8rem !important;
        padding-bottom: 0.4rem !important;
        border-bottom: 2px solid rgba(26, 54, 93, 0.1) !important;
        font-family: inherit !important;
    }
    /* Example queries styling */
    .example-queries {
        margin-bottom: 1.5rem !important;
    }
    .example-query-button {
        background-color: #cce7ff !important;
        color: #1a365d !important;
        border: none !important;
        margin: 3px 0 !important;
        padding: 6px 10px !important;
        border-radius: 4px !important;
        text-align: left !important;
        width: 100% !important;
        cursor: pointer !important;
        transition: background-color 0.3s ease !important;
        font-size: 0.9rem !important;
        font-family: inherit !important;
    }
    .example-query-button:hover {
        background-color: #b0e2ff !important;
    }
    /* Chat container */
    .chat-container {
        background: #e6f3ff !important;
        border-radius: 8px !important;
        padding: 15px !important;
        height: 300px !important;
        overflow-y: auto !important;
        border: 1px solid rgba(176, 226, 255, 0.2) !important;
        backdrop-filter: blur(10px) !important;
        font-family: inherit !important;
    }
    /* Message styling */
    .message.user, .message.bot {
        padding: 8px 12px !important;
        margin: 6px 0 !important;
        border-radius: 6px !important;
        color: #1a365d !important;
        font-size: 0.9rem !important;
        font-family: inherit !important;
        line-height: 1.5 !important;
    }
    .message.user {
        background-color: #cce7ff !important;
    }
    .message.bot {
        background-color: #e6f3ff !important;
    }
    /* Chat input styling */
    textarea {
        background-color: #e6f3ff !important;
        border: 1px solid rgba(176, 226, 255, 0.3) !important;
        border-radius: 6px !important;
        padding: 8px !important;
        color: #1a365d !important;
        font-size: 0.9rem !important;
        font-family: inherit !important;
    }
    /* Button styling */
    .gr-button {
        background-color: #cce7ff !important;
        color: #1a365d !important;
        border: none !important;
        padding: 6px 12px !important;
        font-size: 0.9rem !important;
        font-family: inherit !important;
        border-radius: 4px !important;
    }
    .gr-button:hover {
        background-color: #1a365d !important;
        color: #ffffff !important;
    }
    /* Markdown text styling */
    .prose {
        font-family: inherit !important;
    }
    /* All text elements */
    p, span, div {
        font-family: inherit !important;
    }
"""

def handle_example_click(example_query: str):
    """Handle example query click by returning the query and empty chat history"""
    return example_query, []

# Main application
with gr.Blocks(css=custom_css, theme=gr.themes.Base()) as demo:
    # Header
    gr.HTML("""
        <div class="header-container">
            <h1 class="header-title">Maritime Legal Compliance</h1>
            <p class="header-subtitle">AI-powered assistance for Indian maritime law queries</p>
            <p class="header-subtitle">This chatbot uses Fine-tuned LLAMA-3.1 model personalised specifically to provide assistance with Indian maritime legal queries.</p>
        </div>
    """)

    with gr.Row():
        # Sidebar
        with gr.Column(scale=1, elem_classes="sidebar"):
            gr.Markdown("### Example Queries", elem_classes="sidebar-title")
            
            example_queries = [
                "What are the key regulations governing ports in India?",
                "Explain the concept of cabotage in Indian maritime law.",
                "What are the legal requirements for registering a vessel in India?",
                "What are the environmental regulations for ships in Indian waters?",
                "Explain the Maritime Labour Convention implementation in India.",
                "What are the rules for coastal cargo transportation in India?"
            ]
            
            with gr.Column(elem_classes="example-queries"):
                example_buttons = [gr.Button(query, elem_classes="example-query-button") for query in example_queries]
            
            gr.Markdown("### Configuration", elem_classes="sidebar-title")
            max_tokens = gr.Slider(
                minimum=1,
                maximum=2048,
                value=512,
                step=1,
                label="Response Length"
            )
            temperature = gr.Slider(
                minimum=0.1,
                maximum=4.0,
                value=0.7,
                step=0.1,
                label="Creativity Level"
            )
            top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Response Focus"
            )

        # Main chat area
        with gr.Column(scale=3):
            chatbot = gr.Chatbot(height=300, elem_classes="chat-container")
            msg = gr.Textbox(
                show_label=False,
                placeholder="Type your maritime law query here...",
                container=False
            )
            with gr.Row():
                submit = gr.Button("Send", variant="primary")
                clear = gr.Button("Clear")

            # Event handlers for main chat
            msg.submit(
                fn=respond,
                inputs=[msg, chatbot, max_tokens, temperature, top_p],
                outputs=[chatbot, msg]
            )
            
            submit.click(
                fn=respond,
                inputs=[msg, chatbot, max_tokens, temperature, top_p],
                outputs=[chatbot, msg]
            )
            
            clear.click(
                fn=lambda: ([], ""),
                inputs=None,
                outputs=[chatbot, msg],
                queue=False
            )
            
            # Fixed example query handlers
            for button in example_buttons:
                # First click sets the query text
                button.click(
                    fn=handle_example_click,
                    inputs=[button],
                    outputs=[msg, chatbot],
                    queue=False
                ).then(  # Then immediately trigger the response
                    fn=respond,
                    inputs=[msg, chatbot, max_tokens, temperature, top_p],
                    outputs=[chatbot, msg]
                )

if __name__ == "__main__":
    demo.launch()