import gradio as gr import os from huggingface_hub import InferenceClient from huggingface_hub.inference._generated.types.chat_completion import ChatCompletionStreamOutput MODEL = "nomiChroma3.1" client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message: str, chat_history: list[tuple[str, str]], max_tokens: int, temperature: float, top_p: float, ) -> tuple[list[tuple[str, str]], str]: """ Generate a response and update chat history. Returns tuple of (new_history, None) to clear input box. """ system_message = "You are a maritime legal assistant with expertise strictly in Indian maritime law. Provide detailed legal advice and information within word limit based on Indian maritime legal principles and regulations." messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in chat_history: messages.extend([ {"role": "user", "content": user_msg}, {"role": "assistant", "content": assistant_msg} ]) messages.append({"role": "user", "content": message}) chat_history = chat_history + [(message, None)] response = "" try: for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): try: if isinstance(chunk, ChatCompletionStreamOutput): content = chunk.choices[0].delta.content if content: response += content chat_history[-1] = (message, response) yield chat_history, "" if chunk.choices[0].finish_reason == 'stop': break elif isinstance(chunk, dict): content = chunk.get('choices', [{}])[0].get('delta', {}).get('content') if content: response += content chat_history[-1] = (message, response) yield chat_history, "" if chunk.get('choices', [{}])[0].get('finish_reason') == 'stop': break elif isinstance(chunk, str) and chunk.strip(): response += chunk chat_history[-1] = (message, response) yield chat_history, "" except Exception as e: print(f"Error processing chunk: {e}") continue if not response: chat_history[-1] = (message, "I apologize, but I couldn't generate a response. Please try again.") yield chat_history, "" except Exception as e: error_msg = f"An error occurred: {str(e)}" chat_history[-1] = (message, error_msg) yield chat_history, "" # [Previous imports and respond function remain unchanged] custom_css = """ /* Global styles */ .gradio-container { background-color: #1a365d !important; font-family: 'Inter', -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif !important; } /* Header styling */ .header-container { text-align: center; padding: 1rem 0; margin-bottom: 1rem; border-bottom: 2px solid rgba(255, 255, 255, 0.1); } .header-title { color: #ffffff; font-size: 2rem; margin-bottom: 0.3rem; font-family: inherit; } .header-subtitle { color: #e6f3ff; font-size: 1rem; margin-bottom: 0.2rem; font-family: inherit; } /* Sidebar styling */ .sidebar { background: #e6f3ff !important; border-radius: 8px !important; padding: 15px !important; border: 1px solid rgba(176, 226, 255, 0.2) !important; height: fit-content !important; } .sidebar-title { color: #1a365d !important; font-size: 1.1rem !important; margin-bottom: 0.8rem !important; padding-bottom: 0.4rem !important; border-bottom: 2px solid rgba(26, 54, 93, 0.1) !important; font-family: inherit !important; } /* Example queries styling */ .example-queries { margin-bottom: 1.5rem !important; } .example-query-button { background-color: #cce7ff !important; color: #1a365d !important; border: none !important; margin: 3px 0 !important; padding: 6px 10px !important; border-radius: 4px !important; text-align: left !important; width: 100% !important; cursor: pointer !important; transition: background-color 0.3s ease !important; font-size: 0.9rem !important; font-family: inherit !important; } .example-query-button:hover { background-color: #b0e2ff !important; } /* Chat container */ .chat-container { background: #e6f3ff !important; border-radius: 8px !important; padding: 15px !important; height: 300px !important; overflow-y: auto !important; border: 1px solid rgba(176, 226, 255, 0.2) !important; backdrop-filter: blur(10px) !important; font-family: inherit !important; } /* Message styling */ .message.user, .message.bot { padding: 8px 12px !important; margin: 6px 0 !important; border-radius: 6px !important; color: #1a365d !important; font-size: 0.9rem !important; font-family: inherit !important; line-height: 1.5 !important; } .message.user { background-color: #cce7ff !important; } .message.bot { background-color: #e6f3ff !important; } /* Chat input styling */ textarea { background-color: #e6f3ff !important; border: 1px solid rgba(176, 226, 255, 0.3) !important; border-radius: 6px !important; padding: 8px !important; color: #1a365d !important; font-size: 0.9rem !important; font-family: inherit !important; } /* Button styling */ .gr-button { background-color: #cce7ff !important; color: #1a365d !important; border: none !important; padding: 6px 12px !important; font-size: 0.9rem !important; font-family: inherit !important; border-radius: 4px !important; } .gr-button:hover { background-color: #1a365d !important; color: #ffffff !important; } /* Markdown text styling */ .prose { font-family: inherit !important; } /* All text elements */ p, span, div { font-family: inherit !important; } """ def handle_example_click(example_query: str): """Handle example query click by returning the query and empty chat history""" return example_query, [] # Main application with gr.Blocks(css=custom_css, theme=gr.themes.Base()) as demo: # Header gr.HTML("""

Maritime Legal Compliance

AI-powered assistance for Indian maritime law queries

This chatbot uses Fine-tuned LLAMA-3.1 model personalised specifically to provide assistance with Indian maritime legal queries.

""") with gr.Row(): # Sidebar with gr.Column(scale=1, elem_classes="sidebar"): gr.Markdown("### Example Queries", elem_classes="sidebar-title") example_queries = [ "What are the key regulations governing ports in India?", "Explain the concept of cabotage in Indian maritime law.", "What are the legal requirements for registering a vessel in India?", "What are the environmental regulations for ships in Indian waters?", "Explain the Maritime Labour Convention implementation in India.", "What are the rules for coastal cargo transportation in India?" ] with gr.Column(elem_classes="example-queries"): example_buttons = [gr.Button(query, elem_classes="example-query-button") for query in example_queries] gr.Markdown("### Configuration", elem_classes="sidebar-title") max_tokens = gr.Slider( minimum=1, maximum=2048, value=512, step=1, label="Response Length" ) temperature = gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Creativity Level" ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Response Focus" ) # Main chat area with gr.Column(scale=3): chatbot = gr.Chatbot(height=300, elem_classes="chat-container") msg = gr.Textbox( show_label=False, placeholder="Type your maritime law query here...", container=False ) with gr.Row(): submit = gr.Button("Send", variant="primary") clear = gr.Button("Clear") # Event handlers for main chat msg.submit( fn=respond, inputs=[msg, chatbot, max_tokens, temperature, top_p], outputs=[chatbot, msg] ) submit.click( fn=respond, inputs=[msg, chatbot, max_tokens, temperature, top_p], outputs=[chatbot, msg] ) clear.click( fn=lambda: ([], ""), inputs=None, outputs=[chatbot, msg], queue=False ) # Fixed example query handlers for button in example_buttons: # First click sets the query text button.click( fn=handle_example_click, inputs=[button], outputs=[msg, chatbot], queue=False ).then( # Then immediately trigger the response fn=respond, inputs=[msg, chatbot, max_tokens, temperature, top_p], outputs=[chatbot, msg] ) if __name__ == "__main__": demo.launch()