File size: 10,380 Bytes
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright (c) Facebook, Inc. and its affiliates.
import math
import fvcore.nn.weight_init as weight_init
import torch
import torch.nn.functional as F
from torch import nn

from annotator.oneformer.detectron2.layers import Conv2d, ShapeSpec, get_norm

from .backbone import Backbone
from .build import BACKBONE_REGISTRY
from .resnet import build_resnet_backbone

__all__ = ["build_resnet_fpn_backbone", "build_retinanet_resnet_fpn_backbone", "FPN"]


class FPN(Backbone):
    """
    This module implements :paper:`FPN`.
    It creates pyramid features built on top of some input feature maps.
    """

    _fuse_type: torch.jit.Final[str]

    def __init__(
        self,
        bottom_up,
        in_features,
        out_channels,
        norm="",
        top_block=None,
        fuse_type="sum",
        square_pad=0,
    ):
        """
        Args:
            bottom_up (Backbone): module representing the bottom up subnetwork.
                Must be a subclass of :class:`Backbone`. The multi-scale feature
                maps generated by the bottom up network, and listed in `in_features`,
                are used to generate FPN levels.
            in_features (list[str]): names of the input feature maps coming
                from the backbone to which FPN is attached. For example, if the
                backbone produces ["res2", "res3", "res4"], any *contiguous* sublist
                of these may be used; order must be from high to low resolution.
            out_channels (int): number of channels in the output feature maps.
            norm (str): the normalization to use.
            top_block (nn.Module or None): if provided, an extra operation will
                be performed on the output of the last (smallest resolution)
                FPN output, and the result will extend the result list. The top_block
                further downsamples the feature map. It must have an attribute
                "num_levels", meaning the number of extra FPN levels added by
                this block, and "in_feature", which is a string representing
                its input feature (e.g., p5).
            fuse_type (str): types for fusing the top down features and the lateral
                ones. It can be "sum" (default), which sums up element-wise; or "avg",
                which takes the element-wise mean of the two.
            square_pad (int): If > 0, require input images to be padded to specific square size.
        """
        super(FPN, self).__init__()
        assert isinstance(bottom_up, Backbone)
        assert in_features, in_features

        # Feature map strides and channels from the bottom up network (e.g. ResNet)
        input_shapes = bottom_up.output_shape()
        strides = [input_shapes[f].stride for f in in_features]
        in_channels_per_feature = [input_shapes[f].channels for f in in_features]

        _assert_strides_are_log2_contiguous(strides)
        lateral_convs = []
        output_convs = []

        use_bias = norm == ""
        for idx, in_channels in enumerate(in_channels_per_feature):
            lateral_norm = get_norm(norm, out_channels)
            output_norm = get_norm(norm, out_channels)

            lateral_conv = Conv2d(
                in_channels, out_channels, kernel_size=1, bias=use_bias, norm=lateral_norm
            )
            output_conv = Conv2d(
                out_channels,
                out_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=use_bias,
                norm=output_norm,
            )
            weight_init.c2_xavier_fill(lateral_conv)
            weight_init.c2_xavier_fill(output_conv)
            stage = int(math.log2(strides[idx]))
            self.add_module("fpn_lateral{}".format(stage), lateral_conv)
            self.add_module("fpn_output{}".format(stage), output_conv)

            lateral_convs.append(lateral_conv)
            output_convs.append(output_conv)
        # Place convs into top-down order (from low to high resolution)
        # to make the top-down computation in forward clearer.
        self.lateral_convs = lateral_convs[::-1]
        self.output_convs = output_convs[::-1]
        self.top_block = top_block
        self.in_features = tuple(in_features)
        self.bottom_up = bottom_up
        # Return feature names are "p<stage>", like ["p2", "p3", ..., "p6"]
        self._out_feature_strides = {"p{}".format(int(math.log2(s))): s for s in strides}
        # top block output feature maps.
        if self.top_block is not None:
            for s in range(stage, stage + self.top_block.num_levels):
                self._out_feature_strides["p{}".format(s + 1)] = 2 ** (s + 1)

        self._out_features = list(self._out_feature_strides.keys())
        self._out_feature_channels = {k: out_channels for k in self._out_features}
        self._size_divisibility = strides[-1]
        self._square_pad = square_pad
        assert fuse_type in {"avg", "sum"}
        self._fuse_type = fuse_type

    @property
    def size_divisibility(self):
        return self._size_divisibility

    @property
    def padding_constraints(self):
        return {"square_size": self._square_pad}

    def forward(self, x):
        """
        Args:
            input (dict[str->Tensor]): mapping feature map name (e.g., "res5") to
                feature map tensor for each feature level in high to low resolution order.

        Returns:
            dict[str->Tensor]:
                mapping from feature map name to FPN feature map tensor
                in high to low resolution order. Returned feature names follow the FPN
                paper convention: "p<stage>", where stage has stride = 2 ** stage e.g.,
                ["p2", "p3", ..., "p6"].
        """
        bottom_up_features = self.bottom_up(x)
        results = []
        prev_features = self.lateral_convs[0](bottom_up_features[self.in_features[-1]])
        results.append(self.output_convs[0](prev_features))

        # Reverse feature maps into top-down order (from low to high resolution)
        for idx, (lateral_conv, output_conv) in enumerate(
            zip(self.lateral_convs, self.output_convs)
        ):
            # Slicing of ModuleList is not supported https://github.com/pytorch/pytorch/issues/47336
            # Therefore we loop over all modules but skip the first one
            if idx > 0:
                features = self.in_features[-idx - 1]
                features = bottom_up_features[features]
                top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest")
                lateral_features = lateral_conv(features)
                prev_features = lateral_features + top_down_features
                if self._fuse_type == "avg":
                    prev_features /= 2
                results.insert(0, output_conv(prev_features))

        if self.top_block is not None:
            if self.top_block.in_feature in bottom_up_features:
                top_block_in_feature = bottom_up_features[self.top_block.in_feature]
            else:
                top_block_in_feature = results[self._out_features.index(self.top_block.in_feature)]
            results.extend(self.top_block(top_block_in_feature))
        assert len(self._out_features) == len(results)
        return {f: res for f, res in zip(self._out_features, results)}

    def output_shape(self):
        return {
            name: ShapeSpec(
                channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
            )
            for name in self._out_features
        }


def _assert_strides_are_log2_contiguous(strides):
    """
    Assert that each stride is 2x times its preceding stride, i.e. "contiguous in log2".
    """
    for i, stride in enumerate(strides[1:], 1):
        assert stride == 2 * strides[i - 1], "Strides {} {} are not log2 contiguous".format(
            stride, strides[i - 1]
        )


class LastLevelMaxPool(nn.Module):
    """
    This module is used in the original FPN to generate a downsampled
    P6 feature from P5.
    """

    def __init__(self):
        super().__init__()
        self.num_levels = 1
        self.in_feature = "p5"

    def forward(self, x):
        return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)]


class LastLevelP6P7(nn.Module):
    """
    This module is used in RetinaNet to generate extra layers, P6 and P7 from
    C5 feature.
    """

    def __init__(self, in_channels, out_channels, in_feature="res5"):
        super().__init__()
        self.num_levels = 2
        self.in_feature = in_feature
        self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
        self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
        for module in [self.p6, self.p7]:
            weight_init.c2_xavier_fill(module)

    def forward(self, c5):
        p6 = self.p6(c5)
        p7 = self.p7(F.relu(p6))
        return [p6, p7]


@BACKBONE_REGISTRY.register()
def build_resnet_fpn_backbone(cfg, input_shape: ShapeSpec):
    """
    Args:
        cfg: a detectron2 CfgNode

    Returns:
        backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`.
    """
    bottom_up = build_resnet_backbone(cfg, input_shape)
    in_features = cfg.MODEL.FPN.IN_FEATURES
    out_channels = cfg.MODEL.FPN.OUT_CHANNELS
    backbone = FPN(
        bottom_up=bottom_up,
        in_features=in_features,
        out_channels=out_channels,
        norm=cfg.MODEL.FPN.NORM,
        top_block=LastLevelMaxPool(),
        fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
    )
    return backbone


@BACKBONE_REGISTRY.register()
def build_retinanet_resnet_fpn_backbone(cfg, input_shape: ShapeSpec):
    """
    Args:
        cfg: a detectron2 CfgNode

    Returns:
        backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`.
    """
    bottom_up = build_resnet_backbone(cfg, input_shape)
    in_features = cfg.MODEL.FPN.IN_FEATURES
    out_channels = cfg.MODEL.FPN.OUT_CHANNELS
    in_channels_p6p7 = bottom_up.output_shape()["res5"].channels
    backbone = FPN(
        bottom_up=bottom_up,
        in_features=in_features,
        out_channels=out_channels,
        norm=cfg.MODEL.FPN.NORM,
        top_block=LastLevelP6P7(in_channels_p6p7, out_channels),
        fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
    )
    return backbone