File size: 4,286 Bytes
3c1740d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import cv2
import numpy as np

import onnxruntime

def nms(boxes, scores, nms_thr):
    """Single class NMS implemented in Numpy."""
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        inds = np.where(ovr <= nms_thr)[0]
        order = order[inds + 1]

    return keep

def multiclass_nms(boxes, scores, nms_thr, score_thr):
    """Multiclass NMS implemented in Numpy. Class-aware version."""
    final_dets = []
    num_classes = scores.shape[1]
    for cls_ind in range(num_classes):
        cls_scores = scores[:, cls_ind]
        valid_score_mask = cls_scores > score_thr
        if valid_score_mask.sum() == 0:
            continue
        else:
            valid_scores = cls_scores[valid_score_mask]
            valid_boxes = boxes[valid_score_mask]
            keep = nms(valid_boxes, valid_scores, nms_thr)
            if len(keep) > 0:
                cls_inds = np.ones((len(keep), 1)) * cls_ind
                dets = np.concatenate(
                    [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
                )
                final_dets.append(dets)
    if len(final_dets) == 0:
        return None
    return np.concatenate(final_dets, 0)

def demo_postprocess(outputs, img_size, p6=False):
    grids = []
    expanded_strides = []
    strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]

    hsizes = [img_size[0] // stride for stride in strides]
    wsizes = [img_size[1] // stride for stride in strides]

    for hsize, wsize, stride in zip(hsizes, wsizes, strides):
        xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
        grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
        grids.append(grid)
        shape = grid.shape[:2]
        expanded_strides.append(np.full((*shape, 1), stride))

    grids = np.concatenate(grids, 1)
    expanded_strides = np.concatenate(expanded_strides, 1)
    outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
    outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides

    return outputs

def preprocess(img, input_size, swap=(2, 0, 1)):
    if len(img.shape) == 3:
        padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
    else:
        padded_img = np.ones(input_size, dtype=np.uint8) * 114

    r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
    resized_img = cv2.resize(
        img,
        (int(img.shape[1] * r), int(img.shape[0] * r)),
        interpolation=cv2.INTER_LINEAR,
    ).astype(np.uint8)
    padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img

    padded_img = padded_img.transpose(swap)
    padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
    return padded_img, r

def inference_detector(session, oriImg):
    input_shape = (640,640)
    img, ratio = preprocess(oriImg, input_shape)

    ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
    output = session.run(None, ort_inputs)
    predictions = demo_postprocess(output[0], input_shape)[0]

    boxes = predictions[:, :4]
    scores = predictions[:, 4:5] * predictions[:, 5:]

    boxes_xyxy = np.ones_like(boxes)
    boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
    boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
    boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
    boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
    boxes_xyxy /= ratio
    dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
    if dets is not None:
        final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
        isscore = final_scores>0.3
        iscat = final_cls_inds == 0
        isbbox = [ i and j for (i, j) in zip(isscore, iscat)]
        final_boxes = final_boxes[isbbox]

    return final_boxes