File size: 6,973 Bytes
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import logging

import torch.nn as nn
from annotator.mmpkg.mmcv.cnn import ConvModule, constant_init, kaiming_init
from annotator.mmpkg.mmcv.runner import load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm

from ..builder import BACKBONES
from ..utils import InvertedResidual, make_divisible


@BACKBONES.register_module()
class MobileNetV2(nn.Module):
    """MobileNetV2 backbone.

    Args:
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Default: 1.0.
        strides (Sequence[int], optional): Strides of the first block of each
            layer. If not specified, default config in ``arch_setting`` will
            be used.
        dilations (Sequence[int]): Dilation of each layer.
        out_indices (None or Sequence[int]): Output from which stages.
            Default: (7, ).
        frozen_stages (int): Stages to be frozen (all param fixed).
            Default: -1, which means not freezing any parameters.
        conv_cfg (dict): Config dict for convolution layer.
            Default: None, which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='BN').
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='ReLU6').
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Default: False.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
    """

    # Parameters to build layers. 3 parameters are needed to construct a
    # layer, from left to right: expand_ratio, channel, num_blocks.
    arch_settings = [[1, 16, 1], [6, 24, 2], [6, 32, 3], [6, 64, 4],
                     [6, 96, 3], [6, 160, 3], [6, 320, 1]]

    def __init__(self,
                 widen_factor=1.,
                 strides=(1, 2, 2, 2, 1, 2, 1),
                 dilations=(1, 1, 1, 1, 1, 1, 1),
                 out_indices=(1, 2, 4, 6),
                 frozen_stages=-1,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 act_cfg=dict(type='ReLU6'),
                 norm_eval=False,
                 with_cp=False):
        super(MobileNetV2, self).__init__()
        self.widen_factor = widen_factor
        self.strides = strides
        self.dilations = dilations
        assert len(strides) == len(dilations) == len(self.arch_settings)
        self.out_indices = out_indices
        for index in out_indices:
            if index not in range(0, 7):
                raise ValueError('the item in out_indices must in '
                                 f'range(0, 8). But received {index}')

        if frozen_stages not in range(-1, 7):
            raise ValueError('frozen_stages must be in range(-1, 7). '
                             f'But received {frozen_stages}')
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.norm_eval = norm_eval
        self.with_cp = with_cp

        self.in_channels = make_divisible(32 * widen_factor, 8)

        self.conv1 = ConvModule(
            in_channels=3,
            out_channels=self.in_channels,
            kernel_size=3,
            stride=2,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

        self.layers = []

        for i, layer_cfg in enumerate(self.arch_settings):
            expand_ratio, channel, num_blocks = layer_cfg
            stride = self.strides[i]
            dilation = self.dilations[i]
            out_channels = make_divisible(channel * widen_factor, 8)
            inverted_res_layer = self.make_layer(
                out_channels=out_channels,
                num_blocks=num_blocks,
                stride=stride,
                dilation=dilation,
                expand_ratio=expand_ratio)
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, inverted_res_layer)
            self.layers.append(layer_name)

    def make_layer(self, out_channels, num_blocks, stride, dilation,
                   expand_ratio):
        """Stack InvertedResidual blocks to build a layer for MobileNetV2.

        Args:
            out_channels (int): out_channels of block.
            num_blocks (int): Number of blocks.
            stride (int): Stride of the first block.
            dilation (int): Dilation of the first block.
            expand_ratio (int): Expand the number of channels of the
                hidden layer in InvertedResidual by this ratio.
        """
        layers = []
        for i in range(num_blocks):
            layers.append(
                InvertedResidual(
                    self.in_channels,
                    out_channels,
                    stride if i == 0 else 1,
                    expand_ratio=expand_ratio,
                    dilation=dilation if i == 0 else 1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    act_cfg=self.act_cfg,
                    with_cp=self.with_cp))
            self.in_channels = out_channels

        return nn.Sequential(*layers)

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = logging.getLogger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
                    constant_init(m, 1)
        else:
            raise TypeError('pretrained must be a str or None')

    def forward(self, x):
        x = self.conv1(x)

        outs = []
        for i, layer_name in enumerate(self.layers):
            layer = getattr(self, layer_name)
            x = layer(x)
            if i in self.out_indices:
                outs.append(x)

        if len(outs) == 1:
            return outs[0]
        else:
            return tuple(outs)

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            for param in self.conv1.parameters():
                param.requires_grad = False
        for i in range(1, self.frozen_stages + 1):
            layer = getattr(self, f'layer{i}')
            layer.eval()
            for param in layer.parameters():
                param.requires_grad = False

    def train(self, mode=True):
        super(MobileNetV2, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                if isinstance(m, _BatchNorm):
                    m.eval()