# MLSD Line Detection # From https://github.com/navervision/mlsd # Apache-2.0 license import cv2 import numpy as np import torch import os from einops import rearrange from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny from .models.mbv2_mlsd_large import MobileV2_MLSD_Large from .utils import pred_lines from annotator.util import annotator_ckpts_path remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/mlsd_large_512_fp32.pth" class MLSDdetector: def __init__(self): model_path = os.path.join(annotator_ckpts_path, "mlsd_large_512_fp32.pth") if not os.path.exists(model_path): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) model = MobileV2_MLSD_Large() # model.load_state_dict(torch.load(model_path), strict=True) # self.model = model.cuda().eval() model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=True) self.model = model.cpu().eval() def __call__(self, input_image, thr_v, thr_d): assert input_image.ndim == 3 img = input_image img_output = np.zeros_like(img) try: with torch.no_grad(): lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d) for line in lines: x_start, y_start, x_end, y_end = [int(val) for val in line] cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) except Exception as e: pass return img_output[:, :, 0]