import torch import torch.nn as nn from annotator.mmpkg.mmcv.cnn import (ConvModule, DepthwiseSeparableConvModule, constant_init, kaiming_init) from torch.nn.modules.batchnorm import _BatchNorm from annotator.mmpkg.mmseg.models.decode_heads.psp_head import PPM from annotator.mmpkg.mmseg.ops import resize from ..builder import BACKBONES from ..utils.inverted_residual import InvertedResidual class LearningToDownsample(nn.Module): """Learning to downsample module. Args: in_channels (int): Number of input channels. dw_channels (tuple[int]): Number of output channels of the first and the second depthwise conv (dwconv) layers. out_channels (int): Number of output channels of the whole 'learning to downsample' module. conv_cfg (dict | None): Config of conv layers. Default: None norm_cfg (dict | None): Config of norm layers. Default: dict(type='BN') act_cfg (dict): Config of activation layers. Default: dict(type='ReLU') """ def __init__(self, in_channels, dw_channels, out_channels, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU')): super(LearningToDownsample, self).__init__() self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg dw_channels1 = dw_channels[0] dw_channels2 = dw_channels[1] self.conv = ConvModule( in_channels, dw_channels1, 3, stride=2, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.dsconv1 = DepthwiseSeparableConvModule( dw_channels1, dw_channels2, kernel_size=3, stride=2, padding=1, norm_cfg=self.norm_cfg) self.dsconv2 = DepthwiseSeparableConvModule( dw_channels2, out_channels, kernel_size=3, stride=2, padding=1, norm_cfg=self.norm_cfg) def forward(self, x): x = self.conv(x) x = self.dsconv1(x) x = self.dsconv2(x) return x class GlobalFeatureExtractor(nn.Module): """Global feature extractor module. Args: in_channels (int): Number of input channels of the GFE module. Default: 64 block_channels (tuple[int]): Tuple of ints. Each int specifies the number of output channels of each Inverted Residual module. Default: (64, 96, 128) out_channels(int): Number of output channels of the GFE module. Default: 128 expand_ratio (int): Adjusts number of channels of the hidden layer in InvertedResidual by this amount. Default: 6 num_blocks (tuple[int]): Tuple of ints. Each int specifies the number of times each Inverted Residual module is repeated. The repeated Inverted Residual modules are called a 'group'. Default: (3, 3, 3) strides (tuple[int]): Tuple of ints. Each int specifies the downsampling factor of each 'group'. Default: (2, 2, 1) pool_scales (tuple[int]): Tuple of ints. Each int specifies the parameter required in 'global average pooling' within PPM. Default: (1, 2, 3, 6) conv_cfg (dict | None): Config of conv layers. Default: None norm_cfg (dict | None): Config of norm layers. Default: dict(type='BN') act_cfg (dict): Config of activation layers. Default: dict(type='ReLU') align_corners (bool): align_corners argument of F.interpolate. Default: False """ def __init__(self, in_channels=64, block_channels=(64, 96, 128), out_channels=128, expand_ratio=6, num_blocks=(3, 3, 3), strides=(2, 2, 1), pool_scales=(1, 2, 3, 6), conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), align_corners=False): super(GlobalFeatureExtractor, self).__init__() self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg assert len(block_channels) == len(num_blocks) == 3 self.bottleneck1 = self._make_layer(in_channels, block_channels[0], num_blocks[0], strides[0], expand_ratio) self.bottleneck2 = self._make_layer(block_channels[0], block_channels[1], num_blocks[1], strides[1], expand_ratio) self.bottleneck3 = self._make_layer(block_channels[1], block_channels[2], num_blocks[2], strides[2], expand_ratio) self.ppm = PPM( pool_scales, block_channels[2], block_channels[2] // 4, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, align_corners=align_corners) self.out = ConvModule( block_channels[2] * 2, out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) def _make_layer(self, in_channels, out_channels, blocks, stride=1, expand_ratio=6): layers = [ InvertedResidual( in_channels, out_channels, stride, expand_ratio, norm_cfg=self.norm_cfg) ] for i in range(1, blocks): layers.append( InvertedResidual( out_channels, out_channels, 1, expand_ratio, norm_cfg=self.norm_cfg)) return nn.Sequential(*layers) def forward(self, x): x = self.bottleneck1(x) x = self.bottleneck2(x) x = self.bottleneck3(x) x = torch.cat([x, *self.ppm(x)], dim=1) x = self.out(x) return x class FeatureFusionModule(nn.Module): """Feature fusion module. Args: higher_in_channels (int): Number of input channels of the higher-resolution branch. lower_in_channels (int): Number of input channels of the lower-resolution branch. out_channels (int): Number of output channels. conv_cfg (dict | None): Config of conv layers. Default: None norm_cfg (dict | None): Config of norm layers. Default: dict(type='BN') act_cfg (dict): Config of activation layers. Default: dict(type='ReLU') align_corners (bool): align_corners argument of F.interpolate. Default: False """ def __init__(self, higher_in_channels, lower_in_channels, out_channels, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), align_corners=False): super(FeatureFusionModule, self).__init__() self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.align_corners = align_corners self.dwconv = ConvModule( lower_in_channels, out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.conv_lower_res = ConvModule( out_channels, out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=None) self.conv_higher_res = ConvModule( higher_in_channels, out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=None) self.relu = nn.ReLU(True) def forward(self, higher_res_feature, lower_res_feature): lower_res_feature = resize( lower_res_feature, size=higher_res_feature.size()[2:], mode='bilinear', align_corners=self.align_corners) lower_res_feature = self.dwconv(lower_res_feature) lower_res_feature = self.conv_lower_res(lower_res_feature) higher_res_feature = self.conv_higher_res(higher_res_feature) out = higher_res_feature + lower_res_feature return self.relu(out) @BACKBONES.register_module() class FastSCNN(nn.Module): """Fast-SCNN Backbone. Args: in_channels (int): Number of input image channels. Default: 3. downsample_dw_channels (tuple[int]): Number of output channels after the first conv layer & the second conv layer in Learning-To-Downsample (LTD) module. Default: (32, 48). global_in_channels (int): Number of input channels of Global Feature Extractor(GFE). Equal to number of output channels of LTD. Default: 64. global_block_channels (tuple[int]): Tuple of integers that describe the output channels for each of the MobileNet-v2 bottleneck residual blocks in GFE. Default: (64, 96, 128). global_block_strides (tuple[int]): Tuple of integers that describe the strides (downsampling factors) for each of the MobileNet-v2 bottleneck residual blocks in GFE. Default: (2, 2, 1). global_out_channels (int): Number of output channels of GFE. Default: 128. higher_in_channels (int): Number of input channels of the higher resolution branch in FFM. Equal to global_in_channels. Default: 64. lower_in_channels (int): Number of input channels of the lower resolution branch in FFM. Equal to global_out_channels. Default: 128. fusion_out_channels (int): Number of output channels of FFM. Default: 128. out_indices (tuple): Tuple of indices of list [higher_res_features, lower_res_features, fusion_output]. Often set to (0,1,2) to enable aux. heads. Default: (0, 1, 2). conv_cfg (dict | None): Config of conv layers. Default: None norm_cfg (dict | None): Config of norm layers. Default: dict(type='BN') act_cfg (dict): Config of activation layers. Default: dict(type='ReLU') align_corners (bool): align_corners argument of F.interpolate. Default: False """ def __init__(self, in_channels=3, downsample_dw_channels=(32, 48), global_in_channels=64, global_block_channels=(64, 96, 128), global_block_strides=(2, 2, 1), global_out_channels=128, higher_in_channels=64, lower_in_channels=128, fusion_out_channels=128, out_indices=(0, 1, 2), conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), align_corners=False): super(FastSCNN, self).__init__() if global_in_channels != higher_in_channels: raise AssertionError('Global Input Channels must be the same \ with Higher Input Channels!') elif global_out_channels != lower_in_channels: raise AssertionError('Global Output Channels must be the same \ with Lower Input Channels!') self.in_channels = in_channels self.downsample_dw_channels1 = downsample_dw_channels[0] self.downsample_dw_channels2 = downsample_dw_channels[1] self.global_in_channels = global_in_channels self.global_block_channels = global_block_channels self.global_block_strides = global_block_strides self.global_out_channels = global_out_channels self.higher_in_channels = higher_in_channels self.lower_in_channels = lower_in_channels self.fusion_out_channels = fusion_out_channels self.out_indices = out_indices self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.align_corners = align_corners self.learning_to_downsample = LearningToDownsample( in_channels, downsample_dw_channels, global_in_channels, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.global_feature_extractor = GlobalFeatureExtractor( global_in_channels, global_block_channels, global_out_channels, strides=self.global_block_strides, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, align_corners=self.align_corners) self.feature_fusion = FeatureFusionModule( higher_in_channels, lower_in_channels, fusion_out_channels, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, align_corners=self.align_corners) def init_weights(self, pretrained=None): for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) def forward(self, x): higher_res_features = self.learning_to_downsample(x) lower_res_features = self.global_feature_extractor(higher_res_features) fusion_output = self.feature_fusion(higher_res_features, lower_res_features) outs = [higher_res_features, lower_res_features, fusion_output] outs = [outs[i] for i in self.out_indices] return tuple(outs)