# Openpose # Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose # 2nd Edited by https://github.com/Hzzone/pytorch-openpose # 3rd Edited by ControlNet # 4th Edited by ControlNet (added face and correct hands) import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import torch import numpy as np from . import util from .body import Body from .hand import Hand from .face import Face from annotator.util import annotator_ckpts_path body_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/body_pose_model.pth" hand_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/hand_pose_model.pth" face_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/facenet.pth" def draw_pose(pose, H, W, draw_body=True, draw_hand=True, draw_face=True): bodies = pose['bodies'] faces = pose['faces'] hands = pose['hands'] candidate = bodies['candidate'] subset = bodies['subset'] canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) if draw_body: canvas = util.draw_bodypose(canvas, candidate, subset) if draw_hand: canvas = util.draw_handpose(canvas, hands) if draw_face: canvas = util.draw_facepose(canvas, faces) return canvas class OpenposeDetector: def __init__(self): body_modelpath = os.path.join(annotator_ckpts_path, "body_pose_model.pth") hand_modelpath = os.path.join(annotator_ckpts_path, "hand_pose_model.pth") face_modelpath = os.path.join(annotator_ckpts_path, "facenet.pth") if not os.path.exists(body_modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(body_model_path, model_dir=annotator_ckpts_path) if not os.path.exists(hand_modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(hand_model_path, model_dir=annotator_ckpts_path) if not os.path.exists(face_modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(face_model_path, model_dir=annotator_ckpts_path) self.body_estimation = Body(body_modelpath) self.hand_estimation = Hand(hand_modelpath) self.face_estimation = Face(face_modelpath) def __call__(self, oriImg, hand_and_face=False, return_is_index=False): oriImg = oriImg[:, :, ::-1].copy() H, W, C = oriImg.shape with torch.no_grad(): candidate, subset = self.body_estimation(oriImg) hands = [] faces = [] if hand_and_face: # Hand hands_list = util.handDetect(candidate, subset, oriImg) for x, y, w, is_left in hands_list: peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :]).astype(np.float32) if peaks.ndim == 2 and peaks.shape[1] == 2: peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) hands.append(peaks.tolist()) # Face faces_list = util.faceDetect(candidate, subset, oriImg) for x, y, w in faces_list: heatmaps = self.face_estimation(oriImg[y:y+w, x:x+w, :]) peaks = self.face_estimation.compute_peaks_from_heatmaps(heatmaps).astype(np.float32) if peaks.ndim == 2 and peaks.shape[1] == 2: peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) faces.append(peaks.tolist()) if candidate.ndim == 2 and candidate.shape[1] == 4: candidate = candidate[:, :2] candidate[:, 0] /= float(W) candidate[:, 1] /= float(H) bodies = dict(candidate=candidate.tolist(), subset=subset.tolist()) pose = dict(bodies=bodies, hands=hands, faces=faces) if return_is_index: return pose else: return draw_pose(pose, H, W)