atatakun commited on
Commit
8683813
·
1 Parent(s): 3d35e10

Upload 847 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. annotator/__pycache__/util.cpython-310.pyc +0 -0
  2. annotator/__pycache__/util.cpython-38.pyc +0 -0
  3. annotator/canny/__init__.py +6 -0
  4. annotator/canny/__pycache__/__init__.cpython-38.pyc +0 -0
  5. annotator/ckpts/ckpts.txt +1 -0
  6. annotator/hed/__init__.py +80 -0
  7. annotator/hed/__pycache__/__init__.cpython-38.pyc +0 -0
  8. annotator/lineart/LICENSE +21 -0
  9. annotator/lineart/__init__.py +124 -0
  10. annotator/lineart/__pycache__/__init__.cpython-38.pyc +0 -0
  11. annotator/lineart_anime/LICENSE +21 -0
  12. annotator/lineart_anime/__init__.py +150 -0
  13. annotator/lineart_anime/__pycache__/__init__.cpython-38.pyc +0 -0
  14. annotator/midas/LICENSE +21 -0
  15. annotator/midas/__init__.py +31 -0
  16. annotator/midas/api.py +169 -0
  17. annotator/midas/midas/__init__.py +0 -0
  18. annotator/midas/midas/base_model.py +16 -0
  19. annotator/midas/midas/blocks.py +342 -0
  20. annotator/midas/midas/dpt_depth.py +109 -0
  21. annotator/midas/midas/midas_net.py +76 -0
  22. annotator/midas/midas/midas_net_custom.py +128 -0
  23. annotator/midas/midas/transforms.py +234 -0
  24. annotator/midas/midas/vit.py +491 -0
  25. annotator/midas/utils.py +189 -0
  26. annotator/mlsd/LICENSE +201 -0
  27. annotator/mlsd/__init__.py +43 -0
  28. annotator/mlsd/__pycache__/__init__.cpython-38.pyc +0 -0
  29. annotator/mlsd/models/mbv2_mlsd_large.py +292 -0
  30. annotator/mlsd/models/mbv2_mlsd_tiny.py +275 -0
  31. annotator/mlsd/utils.py +580 -0
  32. annotator/normalbae/LICENSE +21 -0
  33. annotator/normalbae/__init__.py +55 -0
  34. annotator/normalbae/models/NNET.py +22 -0
  35. annotator/normalbae/models/baseline.py +85 -0
  36. annotator/normalbae/models/submodules/decoder.py +202 -0
  37. annotator/normalbae/models/submodules/efficientnet_repo/BENCHMARK.md +555 -0
  38. annotator/normalbae/models/submodules/efficientnet_repo/LICENSE +201 -0
  39. annotator/normalbae/models/submodules/efficientnet_repo/README.md +323 -0
  40. annotator/normalbae/models/submodules/efficientnet_repo/caffe2_benchmark.py +65 -0
  41. annotator/normalbae/models/submodules/efficientnet_repo/caffe2_validate.py +138 -0
  42. annotator/normalbae/models/submodules/efficientnet_repo/data/__init__.py +3 -0
  43. annotator/normalbae/models/submodules/efficientnet_repo/data/dataset.py +91 -0
  44. annotator/normalbae/models/submodules/efficientnet_repo/data/loader.py +108 -0
  45. annotator/normalbae/models/submodules/efficientnet_repo/data/tf_preprocessing.py +234 -0
  46. annotator/normalbae/models/submodules/efficientnet_repo/data/transforms.py +150 -0
  47. annotator/normalbae/models/submodules/efficientnet_repo/geffnet/__init__.py +5 -0
  48. annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/__init__.py +137 -0
  49. annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations.py +102 -0
  50. annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations_jit.py +79 -0
annotator/__pycache__/util.cpython-310.pyc ADDED
Binary file (3.09 kB). View file
 
annotator/__pycache__/util.cpython-38.pyc ADDED
Binary file (3.06 kB). View file
 
annotator/canny/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import cv2
2
+
3
+
4
+ class CannyDetector:
5
+ def __call__(self, img, low_threshold, high_threshold):
6
+ return cv2.Canny(img, low_threshold, high_threshold)
annotator/canny/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (517 Bytes). View file
 
annotator/ckpts/ckpts.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Weights here.
annotator/hed/__init__.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This is an improved version and model of HED edge detection with Apache License, Version 2.0.
2
+ # Please use this implementation in your products
3
+ # This implementation may produce slightly different results from Saining Xie's official implementations,
4
+ # but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
5
+ # Different from official models and other implementations, this is an RGB-input model (rather than BGR)
6
+ # and in this way it works better for gradio's RGB protocol
7
+
8
+ import os
9
+ import cv2
10
+ import torch
11
+ import numpy as np
12
+
13
+ from einops import rearrange
14
+ from annotator.util import annotator_ckpts_path, safe_step
15
+
16
+
17
+ class DoubleConvBlock(torch.nn.Module):
18
+ def __init__(self, input_channel, output_channel, layer_number):
19
+ super().__init__()
20
+ self.convs = torch.nn.Sequential()
21
+ self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
22
+ for i in range(1, layer_number):
23
+ self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
24
+ self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)
25
+
26
+ def __call__(self, x, down_sampling=False):
27
+ h = x
28
+ if down_sampling:
29
+ h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
30
+ for conv in self.convs:
31
+ h = conv(h)
32
+ h = torch.nn.functional.relu(h)
33
+ return h, self.projection(h)
34
+
35
+
36
+ class ControlNetHED_Apache2(torch.nn.Module):
37
+ def __init__(self):
38
+ super().__init__()
39
+ self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
40
+ self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
41
+ self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
42
+ self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
43
+ self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
44
+ self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
45
+
46
+ def __call__(self, x):
47
+ h = x - self.norm
48
+ h, projection1 = self.block1(h)
49
+ h, projection2 = self.block2(h, down_sampling=True)
50
+ h, projection3 = self.block3(h, down_sampling=True)
51
+ h, projection4 = self.block4(h, down_sampling=True)
52
+ h, projection5 = self.block5(h, down_sampling=True)
53
+ return projection1, projection2, projection3, projection4, projection5
54
+
55
+
56
+ class HEDdetector:
57
+ def __init__(self):
58
+ remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth"
59
+ modelpath = os.path.join(annotator_ckpts_path, "ControlNetHED.pth")
60
+ if not os.path.exists(modelpath):
61
+ from basicsr.utils.download_util import load_file_from_url
62
+ load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
63
+ self.netNetwork = ControlNetHED_Apache2().float().cuda().eval()
64
+ self.netNetwork.load_state_dict(torch.load(modelpath))
65
+
66
+ def __call__(self, input_image, safe=False):
67
+ assert input_image.ndim == 3
68
+ H, W, C = input_image.shape
69
+ with torch.no_grad():
70
+ image_hed = torch.from_numpy(input_image.copy()).float().cuda()
71
+ image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
72
+ edges = self.netNetwork(image_hed)
73
+ edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
74
+ edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
75
+ edges = np.stack(edges, axis=2)
76
+ edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
77
+ if safe:
78
+ edge = safe_step(edge)
79
+ edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
80
+ return edge
annotator/hed/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (3.88 kB). View file
 
annotator/lineart/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2022 Caroline Chan
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
annotator/lineart/__init__.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # From https://github.com/carolineec/informative-drawings
2
+ # MIT License
3
+
4
+ import os
5
+ import cv2
6
+ import torch
7
+ import numpy as np
8
+
9
+ import torch.nn as nn
10
+ from einops import rearrange
11
+ from annotator.util import annotator_ckpts_path
12
+
13
+
14
+ norm_layer = nn.InstanceNorm2d
15
+
16
+
17
+ class ResidualBlock(nn.Module):
18
+ def __init__(self, in_features):
19
+ super(ResidualBlock, self).__init__()
20
+
21
+ conv_block = [ nn.ReflectionPad2d(1),
22
+ nn.Conv2d(in_features, in_features, 3),
23
+ norm_layer(in_features),
24
+ nn.ReLU(inplace=True),
25
+ nn.ReflectionPad2d(1),
26
+ nn.Conv2d(in_features, in_features, 3),
27
+ norm_layer(in_features)
28
+ ]
29
+
30
+ self.conv_block = nn.Sequential(*conv_block)
31
+
32
+ def forward(self, x):
33
+ return x + self.conv_block(x)
34
+
35
+
36
+ class Generator(nn.Module):
37
+ def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
38
+ super(Generator, self).__init__()
39
+
40
+ # Initial convolution block
41
+ model0 = [ nn.ReflectionPad2d(3),
42
+ nn.Conv2d(input_nc, 64, 7),
43
+ norm_layer(64),
44
+ nn.ReLU(inplace=True) ]
45
+ self.model0 = nn.Sequential(*model0)
46
+
47
+ # Downsampling
48
+ model1 = []
49
+ in_features = 64
50
+ out_features = in_features*2
51
+ for _ in range(2):
52
+ model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
53
+ norm_layer(out_features),
54
+ nn.ReLU(inplace=True) ]
55
+ in_features = out_features
56
+ out_features = in_features*2
57
+ self.model1 = nn.Sequential(*model1)
58
+
59
+ model2 = []
60
+ # Residual blocks
61
+ for _ in range(n_residual_blocks):
62
+ model2 += [ResidualBlock(in_features)]
63
+ self.model2 = nn.Sequential(*model2)
64
+
65
+ # Upsampling
66
+ model3 = []
67
+ out_features = in_features//2
68
+ for _ in range(2):
69
+ model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
70
+ norm_layer(out_features),
71
+ nn.ReLU(inplace=True) ]
72
+ in_features = out_features
73
+ out_features = in_features//2
74
+ self.model3 = nn.Sequential(*model3)
75
+
76
+ # Output layer
77
+ model4 = [ nn.ReflectionPad2d(3),
78
+ nn.Conv2d(64, output_nc, 7)]
79
+ if sigmoid:
80
+ model4 += [nn.Sigmoid()]
81
+
82
+ self.model4 = nn.Sequential(*model4)
83
+
84
+ def forward(self, x, cond=None):
85
+ out = self.model0(x)
86
+ out = self.model1(out)
87
+ out = self.model2(out)
88
+ out = self.model3(out)
89
+ out = self.model4(out)
90
+
91
+ return out
92
+
93
+
94
+ class LineartDetector:
95
+ def __init__(self):
96
+ self.model = self.load_model('sk_model.pth')
97
+ self.model_coarse = self.load_model('sk_model2.pth')
98
+
99
+ def load_model(self, name):
100
+ remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/" + name
101
+ modelpath = os.path.join(annotator_ckpts_path, name)
102
+ if not os.path.exists(modelpath):
103
+ from basicsr.utils.download_util import load_file_from_url
104
+ load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
105
+ model = Generator(3, 1, 3)
106
+ model.load_state_dict(torch.load(modelpath, map_location=torch.device('cpu')))
107
+ model.eval()
108
+ model = model.cuda()
109
+ return model
110
+
111
+ def __call__(self, input_image, coarse):
112
+ model = self.model_coarse if coarse else self.model
113
+ assert input_image.ndim == 3
114
+ image = input_image
115
+ with torch.no_grad():
116
+ image = torch.from_numpy(image).float().cuda()
117
+ image = image / 255.0
118
+ image = rearrange(image, 'h w c -> 1 c h w')
119
+ line = model(image)[0][0]
120
+
121
+ line = line.cpu().numpy()
122
+ line = (line * 255.0).clip(0, 255).astype(np.uint8)
123
+
124
+ return line
annotator/lineart/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (3.66 kB). View file
 
annotator/lineart_anime/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2022 Caroline Chan
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
annotator/lineart_anime/__init__.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Anime2sketch
2
+ # https://github.com/Mukosame/Anime2Sketch
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn as nn
7
+ import functools
8
+
9
+ import os
10
+ import cv2
11
+ from einops import rearrange
12
+ from annotator.util import annotator_ckpts_path
13
+
14
+
15
+ class UnetGenerator(nn.Module):
16
+ """Create a Unet-based generator"""
17
+
18
+ def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
19
+ """Construct a Unet generator
20
+ Parameters:
21
+ input_nc (int) -- the number of channels in input images
22
+ output_nc (int) -- the number of channels in output images
23
+ num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
24
+ image of size 128x128 will become of size 1x1 # at the bottleneck
25
+ ngf (int) -- the number of filters in the last conv layer
26
+ norm_layer -- normalization layer
27
+ We construct the U-Net from the innermost layer to the outermost layer.
28
+ It is a recursive process.
29
+ """
30
+ super(UnetGenerator, self).__init__()
31
+ # construct unet structure
32
+ unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
33
+ for _ in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
34
+ unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
35
+ # gradually reduce the number of filters from ngf * 8 to ngf
36
+ unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
37
+ unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
38
+ unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
39
+ self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
40
+
41
+ def forward(self, input):
42
+ """Standard forward"""
43
+ return self.model(input)
44
+
45
+
46
+ class UnetSkipConnectionBlock(nn.Module):
47
+ """Defines the Unet submodule with skip connection.
48
+ X -------------------identity----------------------
49
+ |-- downsampling -- |submodule| -- upsampling --|
50
+ """
51
+
52
+ def __init__(self, outer_nc, inner_nc, input_nc=None,
53
+ submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
54
+ """Construct a Unet submodule with skip connections.
55
+ Parameters:
56
+ outer_nc (int) -- the number of filters in the outer conv layer
57
+ inner_nc (int) -- the number of filters in the inner conv layer
58
+ input_nc (int) -- the number of channels in input images/features
59
+ submodule (UnetSkipConnectionBlock) -- previously defined submodules
60
+ outermost (bool) -- if this module is the outermost module
61
+ innermost (bool) -- if this module is the innermost module
62
+ norm_layer -- normalization layer
63
+ use_dropout (bool) -- if use dropout layers.
64
+ """
65
+ super(UnetSkipConnectionBlock, self).__init__()
66
+ self.outermost = outermost
67
+ if type(norm_layer) == functools.partial:
68
+ use_bias = norm_layer.func == nn.InstanceNorm2d
69
+ else:
70
+ use_bias = norm_layer == nn.InstanceNorm2d
71
+ if input_nc is None:
72
+ input_nc = outer_nc
73
+ downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
74
+ stride=2, padding=1, bias=use_bias)
75
+ downrelu = nn.LeakyReLU(0.2, True)
76
+ downnorm = norm_layer(inner_nc)
77
+ uprelu = nn.ReLU(True)
78
+ upnorm = norm_layer(outer_nc)
79
+
80
+ if outermost:
81
+ upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
82
+ kernel_size=4, stride=2,
83
+ padding=1)
84
+ down = [downconv]
85
+ up = [uprelu, upconv, nn.Tanh()]
86
+ model = down + [submodule] + up
87
+ elif innermost:
88
+ upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
89
+ kernel_size=4, stride=2,
90
+ padding=1, bias=use_bias)
91
+ down = [downrelu, downconv]
92
+ up = [uprelu, upconv, upnorm]
93
+ model = down + up
94
+ else:
95
+ upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
96
+ kernel_size=4, stride=2,
97
+ padding=1, bias=use_bias)
98
+ down = [downrelu, downconv, downnorm]
99
+ up = [uprelu, upconv, upnorm]
100
+
101
+ if use_dropout:
102
+ model = down + [submodule] + up + [nn.Dropout(0.5)]
103
+ else:
104
+ model = down + [submodule] + up
105
+
106
+ self.model = nn.Sequential(*model)
107
+
108
+ def forward(self, x):
109
+ if self.outermost:
110
+ return self.model(x)
111
+ else: # add skip connections
112
+ return torch.cat([x, self.model(x)], 1)
113
+
114
+
115
+ class LineartAnimeDetector:
116
+ def __init__(self):
117
+ remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/netG.pth"
118
+ modelpath = os.path.join(annotator_ckpts_path, "netG.pth")
119
+ if not os.path.exists(modelpath):
120
+ from basicsr.utils.download_util import load_file_from_url
121
+ load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
122
+ norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
123
+ net = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False)
124
+ ckpt = torch.load(modelpath)
125
+ for key in list(ckpt.keys()):
126
+ if 'module.' in key:
127
+ ckpt[key.replace('module.', '')] = ckpt[key]
128
+ del ckpt[key]
129
+ net.load_state_dict(ckpt)
130
+ net = net.cuda()
131
+ net.eval()
132
+ self.model = net
133
+
134
+ def __call__(self, input_image):
135
+ H, W, C = input_image.shape
136
+ Hn = 256 * int(np.ceil(float(H) / 256.0))
137
+ Wn = 256 * int(np.ceil(float(W) / 256.0))
138
+ img = cv2.resize(input_image, (Wn, Hn), interpolation=cv2.INTER_CUBIC)
139
+ with torch.no_grad():
140
+ image_feed = torch.from_numpy(img).float().cuda()
141
+ image_feed = image_feed / 127.5 - 1.0
142
+ image_feed = rearrange(image_feed, 'h w c -> 1 c h w')
143
+
144
+ line = self.model(image_feed)[0, 0] * 127.5 + 127.5
145
+ line = line.cpu().numpy()
146
+
147
+ line = cv2.resize(line, (W, H), interpolation=cv2.INTER_CUBIC)
148
+ line = line.clip(0, 255).astype(np.uint8)
149
+ return line
150
+
annotator/lineart_anime/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (5.69 kB). View file
 
annotator/midas/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2019 Intel ISL (Intel Intelligent Systems Lab)
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
annotator/midas/__init__.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Midas Depth Estimation
2
+ # From https://github.com/isl-org/MiDaS
3
+ # MIT LICENSE
4
+
5
+ import cv2
6
+ import numpy as np
7
+ import torch
8
+
9
+ from einops import rearrange
10
+ from .api import MiDaSInference
11
+
12
+
13
+ class MidasDetector:
14
+ def __init__(self):
15
+ self.model = MiDaSInference(model_type="dpt_hybrid").cuda()
16
+
17
+ def __call__(self, input_image):
18
+ assert input_image.ndim == 3
19
+ image_depth = input_image
20
+ with torch.no_grad():
21
+ image_depth = torch.from_numpy(image_depth).float().cuda()
22
+ image_depth = image_depth / 127.5 - 1.0
23
+ image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
24
+ depth = self.model(image_depth)[0]
25
+
26
+ depth -= torch.min(depth)
27
+ depth /= torch.max(depth)
28
+ depth = depth.cpu().numpy()
29
+ depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8)
30
+
31
+ return depth_image
annotator/midas/api.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # based on https://github.com/isl-org/MiDaS
2
+
3
+ import cv2
4
+ import os
5
+ import torch
6
+ import torch.nn as nn
7
+ from torchvision.transforms import Compose
8
+
9
+ from .midas.dpt_depth import DPTDepthModel
10
+ from .midas.midas_net import MidasNet
11
+ from .midas.midas_net_custom import MidasNet_small
12
+ from .midas.transforms import Resize, NormalizeImage, PrepareForNet
13
+ from annotator.util import annotator_ckpts_path
14
+
15
+
16
+ ISL_PATHS = {
17
+ "dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"),
18
+ "dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"),
19
+ "midas_v21": "",
20
+ "midas_v21_small": "",
21
+ }
22
+
23
+ remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/dpt_hybrid-midas-501f0c75.pt"
24
+
25
+
26
+ def disabled_train(self, mode=True):
27
+ """Overwrite model.train with this function to make sure train/eval mode
28
+ does not change anymore."""
29
+ return self
30
+
31
+
32
+ def load_midas_transform(model_type):
33
+ # https://github.com/isl-org/MiDaS/blob/master/run.py
34
+ # load transform only
35
+ if model_type == "dpt_large": # DPT-Large
36
+ net_w, net_h = 384, 384
37
+ resize_mode = "minimal"
38
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
39
+
40
+ elif model_type == "dpt_hybrid": # DPT-Hybrid
41
+ net_w, net_h = 384, 384
42
+ resize_mode = "minimal"
43
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
44
+
45
+ elif model_type == "midas_v21":
46
+ net_w, net_h = 384, 384
47
+ resize_mode = "upper_bound"
48
+ normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
49
+
50
+ elif model_type == "midas_v21_small":
51
+ net_w, net_h = 256, 256
52
+ resize_mode = "upper_bound"
53
+ normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
54
+
55
+ else:
56
+ assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
57
+
58
+ transform = Compose(
59
+ [
60
+ Resize(
61
+ net_w,
62
+ net_h,
63
+ resize_target=None,
64
+ keep_aspect_ratio=True,
65
+ ensure_multiple_of=32,
66
+ resize_method=resize_mode,
67
+ image_interpolation_method=cv2.INTER_CUBIC,
68
+ ),
69
+ normalization,
70
+ PrepareForNet(),
71
+ ]
72
+ )
73
+
74
+ return transform
75
+
76
+
77
+ def load_model(model_type):
78
+ # https://github.com/isl-org/MiDaS/blob/master/run.py
79
+ # load network
80
+ model_path = ISL_PATHS[model_type]
81
+ if model_type == "dpt_large": # DPT-Large
82
+ model = DPTDepthModel(
83
+ path=model_path,
84
+ backbone="vitl16_384",
85
+ non_negative=True,
86
+ )
87
+ net_w, net_h = 384, 384
88
+ resize_mode = "minimal"
89
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
90
+
91
+ elif model_type == "dpt_hybrid": # DPT-Hybrid
92
+ if not os.path.exists(model_path):
93
+ from basicsr.utils.download_util import load_file_from_url
94
+ load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
95
+
96
+ model = DPTDepthModel(
97
+ path=model_path,
98
+ backbone="vitb_rn50_384",
99
+ non_negative=True,
100
+ )
101
+ net_w, net_h = 384, 384
102
+ resize_mode = "minimal"
103
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
104
+
105
+ elif model_type == "midas_v21":
106
+ model = MidasNet(model_path, non_negative=True)
107
+ net_w, net_h = 384, 384
108
+ resize_mode = "upper_bound"
109
+ normalization = NormalizeImage(
110
+ mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
111
+ )
112
+
113
+ elif model_type == "midas_v21_small":
114
+ model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
115
+ non_negative=True, blocks={'expand': True})
116
+ net_w, net_h = 256, 256
117
+ resize_mode = "upper_bound"
118
+ normalization = NormalizeImage(
119
+ mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
120
+ )
121
+
122
+ else:
123
+ print(f"model_type '{model_type}' not implemented, use: --model_type large")
124
+ assert False
125
+
126
+ transform = Compose(
127
+ [
128
+ Resize(
129
+ net_w,
130
+ net_h,
131
+ resize_target=None,
132
+ keep_aspect_ratio=True,
133
+ ensure_multiple_of=32,
134
+ resize_method=resize_mode,
135
+ image_interpolation_method=cv2.INTER_CUBIC,
136
+ ),
137
+ normalization,
138
+ PrepareForNet(),
139
+ ]
140
+ )
141
+
142
+ return model.eval(), transform
143
+
144
+
145
+ class MiDaSInference(nn.Module):
146
+ MODEL_TYPES_TORCH_HUB = [
147
+ "DPT_Large",
148
+ "DPT_Hybrid",
149
+ "MiDaS_small"
150
+ ]
151
+ MODEL_TYPES_ISL = [
152
+ "dpt_large",
153
+ "dpt_hybrid",
154
+ "midas_v21",
155
+ "midas_v21_small",
156
+ ]
157
+
158
+ def __init__(self, model_type):
159
+ super().__init__()
160
+ assert (model_type in self.MODEL_TYPES_ISL)
161
+ model, _ = load_model(model_type)
162
+ self.model = model
163
+ self.model.train = disabled_train
164
+
165
+ def forward(self, x):
166
+ with torch.no_grad():
167
+ prediction = self.model(x)
168
+ return prediction
169
+
annotator/midas/midas/__init__.py ADDED
File without changes
annotator/midas/midas/base_model.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ class BaseModel(torch.nn.Module):
5
+ def load(self, path):
6
+ """Load model from file.
7
+
8
+ Args:
9
+ path (str): file path
10
+ """
11
+ parameters = torch.load(path, map_location=torch.device('cpu'))
12
+
13
+ if "optimizer" in parameters:
14
+ parameters = parameters["model"]
15
+
16
+ self.load_state_dict(parameters)
annotator/midas/midas/blocks.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from .vit import (
5
+ _make_pretrained_vitb_rn50_384,
6
+ _make_pretrained_vitl16_384,
7
+ _make_pretrained_vitb16_384,
8
+ forward_vit,
9
+ )
10
+
11
+ def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
12
+ if backbone == "vitl16_384":
13
+ pretrained = _make_pretrained_vitl16_384(
14
+ use_pretrained, hooks=hooks, use_readout=use_readout
15
+ )
16
+ scratch = _make_scratch(
17
+ [256, 512, 1024, 1024], features, groups=groups, expand=expand
18
+ ) # ViT-L/16 - 85.0% Top1 (backbone)
19
+ elif backbone == "vitb_rn50_384":
20
+ pretrained = _make_pretrained_vitb_rn50_384(
21
+ use_pretrained,
22
+ hooks=hooks,
23
+ use_vit_only=use_vit_only,
24
+ use_readout=use_readout,
25
+ )
26
+ scratch = _make_scratch(
27
+ [256, 512, 768, 768], features, groups=groups, expand=expand
28
+ ) # ViT-H/16 - 85.0% Top1 (backbone)
29
+ elif backbone == "vitb16_384":
30
+ pretrained = _make_pretrained_vitb16_384(
31
+ use_pretrained, hooks=hooks, use_readout=use_readout
32
+ )
33
+ scratch = _make_scratch(
34
+ [96, 192, 384, 768], features, groups=groups, expand=expand
35
+ ) # ViT-B/16 - 84.6% Top1 (backbone)
36
+ elif backbone == "resnext101_wsl":
37
+ pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
38
+ scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
39
+ elif backbone == "efficientnet_lite3":
40
+ pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
41
+ scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
42
+ else:
43
+ print(f"Backbone '{backbone}' not implemented")
44
+ assert False
45
+
46
+ return pretrained, scratch
47
+
48
+
49
+ def _make_scratch(in_shape, out_shape, groups=1, expand=False):
50
+ scratch = nn.Module()
51
+
52
+ out_shape1 = out_shape
53
+ out_shape2 = out_shape
54
+ out_shape3 = out_shape
55
+ out_shape4 = out_shape
56
+ if expand==True:
57
+ out_shape1 = out_shape
58
+ out_shape2 = out_shape*2
59
+ out_shape3 = out_shape*4
60
+ out_shape4 = out_shape*8
61
+
62
+ scratch.layer1_rn = nn.Conv2d(
63
+ in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
64
+ )
65
+ scratch.layer2_rn = nn.Conv2d(
66
+ in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
67
+ )
68
+ scratch.layer3_rn = nn.Conv2d(
69
+ in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
70
+ )
71
+ scratch.layer4_rn = nn.Conv2d(
72
+ in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
73
+ )
74
+
75
+ return scratch
76
+
77
+
78
+ def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
79
+ efficientnet = torch.hub.load(
80
+ "rwightman/gen-efficientnet-pytorch",
81
+ "tf_efficientnet_lite3",
82
+ pretrained=use_pretrained,
83
+ exportable=exportable
84
+ )
85
+ return _make_efficientnet_backbone(efficientnet)
86
+
87
+
88
+ def _make_efficientnet_backbone(effnet):
89
+ pretrained = nn.Module()
90
+
91
+ pretrained.layer1 = nn.Sequential(
92
+ effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
93
+ )
94
+ pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
95
+ pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
96
+ pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
97
+
98
+ return pretrained
99
+
100
+
101
+ def _make_resnet_backbone(resnet):
102
+ pretrained = nn.Module()
103
+ pretrained.layer1 = nn.Sequential(
104
+ resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
105
+ )
106
+
107
+ pretrained.layer2 = resnet.layer2
108
+ pretrained.layer3 = resnet.layer3
109
+ pretrained.layer4 = resnet.layer4
110
+
111
+ return pretrained
112
+
113
+
114
+ def _make_pretrained_resnext101_wsl(use_pretrained):
115
+ resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
116
+ return _make_resnet_backbone(resnet)
117
+
118
+
119
+
120
+ class Interpolate(nn.Module):
121
+ """Interpolation module.
122
+ """
123
+
124
+ def __init__(self, scale_factor, mode, align_corners=False):
125
+ """Init.
126
+
127
+ Args:
128
+ scale_factor (float): scaling
129
+ mode (str): interpolation mode
130
+ """
131
+ super(Interpolate, self).__init__()
132
+
133
+ self.interp = nn.functional.interpolate
134
+ self.scale_factor = scale_factor
135
+ self.mode = mode
136
+ self.align_corners = align_corners
137
+
138
+ def forward(self, x):
139
+ """Forward pass.
140
+
141
+ Args:
142
+ x (tensor): input
143
+
144
+ Returns:
145
+ tensor: interpolated data
146
+ """
147
+
148
+ x = self.interp(
149
+ x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
150
+ )
151
+
152
+ return x
153
+
154
+
155
+ class ResidualConvUnit(nn.Module):
156
+ """Residual convolution module.
157
+ """
158
+
159
+ def __init__(self, features):
160
+ """Init.
161
+
162
+ Args:
163
+ features (int): number of features
164
+ """
165
+ super().__init__()
166
+
167
+ self.conv1 = nn.Conv2d(
168
+ features, features, kernel_size=3, stride=1, padding=1, bias=True
169
+ )
170
+
171
+ self.conv2 = nn.Conv2d(
172
+ features, features, kernel_size=3, stride=1, padding=1, bias=True
173
+ )
174
+
175
+ self.relu = nn.ReLU(inplace=True)
176
+
177
+ def forward(self, x):
178
+ """Forward pass.
179
+
180
+ Args:
181
+ x (tensor): input
182
+
183
+ Returns:
184
+ tensor: output
185
+ """
186
+ out = self.relu(x)
187
+ out = self.conv1(out)
188
+ out = self.relu(out)
189
+ out = self.conv2(out)
190
+
191
+ return out + x
192
+
193
+
194
+ class FeatureFusionBlock(nn.Module):
195
+ """Feature fusion block.
196
+ """
197
+
198
+ def __init__(self, features):
199
+ """Init.
200
+
201
+ Args:
202
+ features (int): number of features
203
+ """
204
+ super(FeatureFusionBlock, self).__init__()
205
+
206
+ self.resConfUnit1 = ResidualConvUnit(features)
207
+ self.resConfUnit2 = ResidualConvUnit(features)
208
+
209
+ def forward(self, *xs):
210
+ """Forward pass.
211
+
212
+ Returns:
213
+ tensor: output
214
+ """
215
+ output = xs[0]
216
+
217
+ if len(xs) == 2:
218
+ output += self.resConfUnit1(xs[1])
219
+
220
+ output = self.resConfUnit2(output)
221
+
222
+ output = nn.functional.interpolate(
223
+ output, scale_factor=2, mode="bilinear", align_corners=True
224
+ )
225
+
226
+ return output
227
+
228
+
229
+
230
+
231
+ class ResidualConvUnit_custom(nn.Module):
232
+ """Residual convolution module.
233
+ """
234
+
235
+ def __init__(self, features, activation, bn):
236
+ """Init.
237
+
238
+ Args:
239
+ features (int): number of features
240
+ """
241
+ super().__init__()
242
+
243
+ self.bn = bn
244
+
245
+ self.groups=1
246
+
247
+ self.conv1 = nn.Conv2d(
248
+ features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
249
+ )
250
+
251
+ self.conv2 = nn.Conv2d(
252
+ features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
253
+ )
254
+
255
+ if self.bn==True:
256
+ self.bn1 = nn.BatchNorm2d(features)
257
+ self.bn2 = nn.BatchNorm2d(features)
258
+
259
+ self.activation = activation
260
+
261
+ self.skip_add = nn.quantized.FloatFunctional()
262
+
263
+ def forward(self, x):
264
+ """Forward pass.
265
+
266
+ Args:
267
+ x (tensor): input
268
+
269
+ Returns:
270
+ tensor: output
271
+ """
272
+
273
+ out = self.activation(x)
274
+ out = self.conv1(out)
275
+ if self.bn==True:
276
+ out = self.bn1(out)
277
+
278
+ out = self.activation(out)
279
+ out = self.conv2(out)
280
+ if self.bn==True:
281
+ out = self.bn2(out)
282
+
283
+ if self.groups > 1:
284
+ out = self.conv_merge(out)
285
+
286
+ return self.skip_add.add(out, x)
287
+
288
+ # return out + x
289
+
290
+
291
+ class FeatureFusionBlock_custom(nn.Module):
292
+ """Feature fusion block.
293
+ """
294
+
295
+ def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
296
+ """Init.
297
+
298
+ Args:
299
+ features (int): number of features
300
+ """
301
+ super(FeatureFusionBlock_custom, self).__init__()
302
+
303
+ self.deconv = deconv
304
+ self.align_corners = align_corners
305
+
306
+ self.groups=1
307
+
308
+ self.expand = expand
309
+ out_features = features
310
+ if self.expand==True:
311
+ out_features = features//2
312
+
313
+ self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
314
+
315
+ self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
316
+ self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
317
+
318
+ self.skip_add = nn.quantized.FloatFunctional()
319
+
320
+ def forward(self, *xs):
321
+ """Forward pass.
322
+
323
+ Returns:
324
+ tensor: output
325
+ """
326
+ output = xs[0]
327
+
328
+ if len(xs) == 2:
329
+ res = self.resConfUnit1(xs[1])
330
+ output = self.skip_add.add(output, res)
331
+ # output += res
332
+
333
+ output = self.resConfUnit2(output)
334
+
335
+ output = nn.functional.interpolate(
336
+ output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
337
+ )
338
+
339
+ output = self.out_conv(output)
340
+
341
+ return output
342
+
annotator/midas/midas/dpt_depth.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .base_model import BaseModel
6
+ from .blocks import (
7
+ FeatureFusionBlock,
8
+ FeatureFusionBlock_custom,
9
+ Interpolate,
10
+ _make_encoder,
11
+ forward_vit,
12
+ )
13
+
14
+
15
+ def _make_fusion_block(features, use_bn):
16
+ return FeatureFusionBlock_custom(
17
+ features,
18
+ nn.ReLU(False),
19
+ deconv=False,
20
+ bn=use_bn,
21
+ expand=False,
22
+ align_corners=True,
23
+ )
24
+
25
+
26
+ class DPT(BaseModel):
27
+ def __init__(
28
+ self,
29
+ head,
30
+ features=256,
31
+ backbone="vitb_rn50_384",
32
+ readout="project",
33
+ channels_last=False,
34
+ use_bn=False,
35
+ ):
36
+
37
+ super(DPT, self).__init__()
38
+
39
+ self.channels_last = channels_last
40
+
41
+ hooks = {
42
+ "vitb_rn50_384": [0, 1, 8, 11],
43
+ "vitb16_384": [2, 5, 8, 11],
44
+ "vitl16_384": [5, 11, 17, 23],
45
+ }
46
+
47
+ # Instantiate backbone and reassemble blocks
48
+ self.pretrained, self.scratch = _make_encoder(
49
+ backbone,
50
+ features,
51
+ False, # Set to true of you want to train from scratch, uses ImageNet weights
52
+ groups=1,
53
+ expand=False,
54
+ exportable=False,
55
+ hooks=hooks[backbone],
56
+ use_readout=readout,
57
+ )
58
+
59
+ self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
60
+ self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
61
+ self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
62
+ self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
63
+
64
+ self.scratch.output_conv = head
65
+
66
+
67
+ def forward(self, x):
68
+ if self.channels_last == True:
69
+ x.contiguous(memory_format=torch.channels_last)
70
+
71
+ layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
72
+
73
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
74
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
75
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
76
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
77
+
78
+ path_4 = self.scratch.refinenet4(layer_4_rn)
79
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
80
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
81
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
82
+
83
+ out = self.scratch.output_conv(path_1)
84
+
85
+ return out
86
+
87
+
88
+ class DPTDepthModel(DPT):
89
+ def __init__(self, path=None, non_negative=True, **kwargs):
90
+ features = kwargs["features"] if "features" in kwargs else 256
91
+
92
+ head = nn.Sequential(
93
+ nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
94
+ Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
95
+ nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
96
+ nn.ReLU(True),
97
+ nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
98
+ nn.ReLU(True) if non_negative else nn.Identity(),
99
+ nn.Identity(),
100
+ )
101
+
102
+ super().__init__(head, **kwargs)
103
+
104
+ if path is not None:
105
+ self.load(path)
106
+
107
+ def forward(self, x):
108
+ return super().forward(x).squeeze(dim=1)
109
+
annotator/midas/midas/midas_net.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """MidashNet: Network for monocular depth estimation trained by mixing several datasets.
2
+ This file contains code that is adapted from
3
+ https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
4
+ """
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from .base_model import BaseModel
9
+ from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
10
+
11
+
12
+ class MidasNet(BaseModel):
13
+ """Network for monocular depth estimation.
14
+ """
15
+
16
+ def __init__(self, path=None, features=256, non_negative=True):
17
+ """Init.
18
+
19
+ Args:
20
+ path (str, optional): Path to saved model. Defaults to None.
21
+ features (int, optional): Number of features. Defaults to 256.
22
+ backbone (str, optional): Backbone network for encoder. Defaults to resnet50
23
+ """
24
+ print("Loading weights: ", path)
25
+
26
+ super(MidasNet, self).__init__()
27
+
28
+ use_pretrained = False if path is None else True
29
+
30
+ self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
31
+
32
+ self.scratch.refinenet4 = FeatureFusionBlock(features)
33
+ self.scratch.refinenet3 = FeatureFusionBlock(features)
34
+ self.scratch.refinenet2 = FeatureFusionBlock(features)
35
+ self.scratch.refinenet1 = FeatureFusionBlock(features)
36
+
37
+ self.scratch.output_conv = nn.Sequential(
38
+ nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
39
+ Interpolate(scale_factor=2, mode="bilinear"),
40
+ nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
41
+ nn.ReLU(True),
42
+ nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
43
+ nn.ReLU(True) if non_negative else nn.Identity(),
44
+ )
45
+
46
+ if path:
47
+ self.load(path)
48
+
49
+ def forward(self, x):
50
+ """Forward pass.
51
+
52
+ Args:
53
+ x (tensor): input data (image)
54
+
55
+ Returns:
56
+ tensor: depth
57
+ """
58
+
59
+ layer_1 = self.pretrained.layer1(x)
60
+ layer_2 = self.pretrained.layer2(layer_1)
61
+ layer_3 = self.pretrained.layer3(layer_2)
62
+ layer_4 = self.pretrained.layer4(layer_3)
63
+
64
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
65
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
66
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
67
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
68
+
69
+ path_4 = self.scratch.refinenet4(layer_4_rn)
70
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
71
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
72
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
73
+
74
+ out = self.scratch.output_conv(path_1)
75
+
76
+ return torch.squeeze(out, dim=1)
annotator/midas/midas/midas_net_custom.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """MidashNet: Network for monocular depth estimation trained by mixing several datasets.
2
+ This file contains code that is adapted from
3
+ https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
4
+ """
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from .base_model import BaseModel
9
+ from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
10
+
11
+
12
+ class MidasNet_small(BaseModel):
13
+ """Network for monocular depth estimation.
14
+ """
15
+
16
+ def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
17
+ blocks={'expand': True}):
18
+ """Init.
19
+
20
+ Args:
21
+ path (str, optional): Path to saved model. Defaults to None.
22
+ features (int, optional): Number of features. Defaults to 256.
23
+ backbone (str, optional): Backbone network for encoder. Defaults to resnet50
24
+ """
25
+ print("Loading weights: ", path)
26
+
27
+ super(MidasNet_small, self).__init__()
28
+
29
+ use_pretrained = False if path else True
30
+
31
+ self.channels_last = channels_last
32
+ self.blocks = blocks
33
+ self.backbone = backbone
34
+
35
+ self.groups = 1
36
+
37
+ features1=features
38
+ features2=features
39
+ features3=features
40
+ features4=features
41
+ self.expand = False
42
+ if "expand" in self.blocks and self.blocks['expand'] == True:
43
+ self.expand = True
44
+ features1=features
45
+ features2=features*2
46
+ features3=features*4
47
+ features4=features*8
48
+
49
+ self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
50
+
51
+ self.scratch.activation = nn.ReLU(False)
52
+
53
+ self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
54
+ self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
55
+ self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
56
+ self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
57
+
58
+
59
+ self.scratch.output_conv = nn.Sequential(
60
+ nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
61
+ Interpolate(scale_factor=2, mode="bilinear"),
62
+ nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
63
+ self.scratch.activation,
64
+ nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
65
+ nn.ReLU(True) if non_negative else nn.Identity(),
66
+ nn.Identity(),
67
+ )
68
+
69
+ if path:
70
+ self.load(path)
71
+
72
+
73
+ def forward(self, x):
74
+ """Forward pass.
75
+
76
+ Args:
77
+ x (tensor): input data (image)
78
+
79
+ Returns:
80
+ tensor: depth
81
+ """
82
+ if self.channels_last==True:
83
+ print("self.channels_last = ", self.channels_last)
84
+ x.contiguous(memory_format=torch.channels_last)
85
+
86
+
87
+ layer_1 = self.pretrained.layer1(x)
88
+ layer_2 = self.pretrained.layer2(layer_1)
89
+ layer_3 = self.pretrained.layer3(layer_2)
90
+ layer_4 = self.pretrained.layer4(layer_3)
91
+
92
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
93
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
94
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
95
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
96
+
97
+
98
+ path_4 = self.scratch.refinenet4(layer_4_rn)
99
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
100
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
101
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
102
+
103
+ out = self.scratch.output_conv(path_1)
104
+
105
+ return torch.squeeze(out, dim=1)
106
+
107
+
108
+
109
+ def fuse_model(m):
110
+ prev_previous_type = nn.Identity()
111
+ prev_previous_name = ''
112
+ previous_type = nn.Identity()
113
+ previous_name = ''
114
+ for name, module in m.named_modules():
115
+ if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
116
+ # print("FUSED ", prev_previous_name, previous_name, name)
117
+ torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
118
+ elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
119
+ # print("FUSED ", prev_previous_name, previous_name)
120
+ torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
121
+ # elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
122
+ # print("FUSED ", previous_name, name)
123
+ # torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
124
+
125
+ prev_previous_type = previous_type
126
+ prev_previous_name = previous_name
127
+ previous_type = type(module)
128
+ previous_name = name
annotator/midas/midas/transforms.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ import math
4
+
5
+
6
+ def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
7
+ """Rezise the sample to ensure the given size. Keeps aspect ratio.
8
+
9
+ Args:
10
+ sample (dict): sample
11
+ size (tuple): image size
12
+
13
+ Returns:
14
+ tuple: new size
15
+ """
16
+ shape = list(sample["disparity"].shape)
17
+
18
+ if shape[0] >= size[0] and shape[1] >= size[1]:
19
+ return sample
20
+
21
+ scale = [0, 0]
22
+ scale[0] = size[0] / shape[0]
23
+ scale[1] = size[1] / shape[1]
24
+
25
+ scale = max(scale)
26
+
27
+ shape[0] = math.ceil(scale * shape[0])
28
+ shape[1] = math.ceil(scale * shape[1])
29
+
30
+ # resize
31
+ sample["image"] = cv2.resize(
32
+ sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
33
+ )
34
+
35
+ sample["disparity"] = cv2.resize(
36
+ sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
37
+ )
38
+ sample["mask"] = cv2.resize(
39
+ sample["mask"].astype(np.float32),
40
+ tuple(shape[::-1]),
41
+ interpolation=cv2.INTER_NEAREST,
42
+ )
43
+ sample["mask"] = sample["mask"].astype(bool)
44
+
45
+ return tuple(shape)
46
+
47
+
48
+ class Resize(object):
49
+ """Resize sample to given size (width, height).
50
+ """
51
+
52
+ def __init__(
53
+ self,
54
+ width,
55
+ height,
56
+ resize_target=True,
57
+ keep_aspect_ratio=False,
58
+ ensure_multiple_of=1,
59
+ resize_method="lower_bound",
60
+ image_interpolation_method=cv2.INTER_AREA,
61
+ ):
62
+ """Init.
63
+
64
+ Args:
65
+ width (int): desired output width
66
+ height (int): desired output height
67
+ resize_target (bool, optional):
68
+ True: Resize the full sample (image, mask, target).
69
+ False: Resize image only.
70
+ Defaults to True.
71
+ keep_aspect_ratio (bool, optional):
72
+ True: Keep the aspect ratio of the input sample.
73
+ Output sample might not have the given width and height, and
74
+ resize behaviour depends on the parameter 'resize_method'.
75
+ Defaults to False.
76
+ ensure_multiple_of (int, optional):
77
+ Output width and height is constrained to be multiple of this parameter.
78
+ Defaults to 1.
79
+ resize_method (str, optional):
80
+ "lower_bound": Output will be at least as large as the given size.
81
+ "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
82
+ "minimal": Scale as least as possible. (Output size might be smaller than given size.)
83
+ Defaults to "lower_bound".
84
+ """
85
+ self.__width = width
86
+ self.__height = height
87
+
88
+ self.__resize_target = resize_target
89
+ self.__keep_aspect_ratio = keep_aspect_ratio
90
+ self.__multiple_of = ensure_multiple_of
91
+ self.__resize_method = resize_method
92
+ self.__image_interpolation_method = image_interpolation_method
93
+
94
+ def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
95
+ y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
96
+
97
+ if max_val is not None and y > max_val:
98
+ y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
99
+
100
+ if y < min_val:
101
+ y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
102
+
103
+ return y
104
+
105
+ def get_size(self, width, height):
106
+ # determine new height and width
107
+ scale_height = self.__height / height
108
+ scale_width = self.__width / width
109
+
110
+ if self.__keep_aspect_ratio:
111
+ if self.__resize_method == "lower_bound":
112
+ # scale such that output size is lower bound
113
+ if scale_width > scale_height:
114
+ # fit width
115
+ scale_height = scale_width
116
+ else:
117
+ # fit height
118
+ scale_width = scale_height
119
+ elif self.__resize_method == "upper_bound":
120
+ # scale such that output size is upper bound
121
+ if scale_width < scale_height:
122
+ # fit width
123
+ scale_height = scale_width
124
+ else:
125
+ # fit height
126
+ scale_width = scale_height
127
+ elif self.__resize_method == "minimal":
128
+ # scale as least as possbile
129
+ if abs(1 - scale_width) < abs(1 - scale_height):
130
+ # fit width
131
+ scale_height = scale_width
132
+ else:
133
+ # fit height
134
+ scale_width = scale_height
135
+ else:
136
+ raise ValueError(
137
+ f"resize_method {self.__resize_method} not implemented"
138
+ )
139
+
140
+ if self.__resize_method == "lower_bound":
141
+ new_height = self.constrain_to_multiple_of(
142
+ scale_height * height, min_val=self.__height
143
+ )
144
+ new_width = self.constrain_to_multiple_of(
145
+ scale_width * width, min_val=self.__width
146
+ )
147
+ elif self.__resize_method == "upper_bound":
148
+ new_height = self.constrain_to_multiple_of(
149
+ scale_height * height, max_val=self.__height
150
+ )
151
+ new_width = self.constrain_to_multiple_of(
152
+ scale_width * width, max_val=self.__width
153
+ )
154
+ elif self.__resize_method == "minimal":
155
+ new_height = self.constrain_to_multiple_of(scale_height * height)
156
+ new_width = self.constrain_to_multiple_of(scale_width * width)
157
+ else:
158
+ raise ValueError(f"resize_method {self.__resize_method} not implemented")
159
+
160
+ return (new_width, new_height)
161
+
162
+ def __call__(self, sample):
163
+ width, height = self.get_size(
164
+ sample["image"].shape[1], sample["image"].shape[0]
165
+ )
166
+
167
+ # resize sample
168
+ sample["image"] = cv2.resize(
169
+ sample["image"],
170
+ (width, height),
171
+ interpolation=self.__image_interpolation_method,
172
+ )
173
+
174
+ if self.__resize_target:
175
+ if "disparity" in sample:
176
+ sample["disparity"] = cv2.resize(
177
+ sample["disparity"],
178
+ (width, height),
179
+ interpolation=cv2.INTER_NEAREST,
180
+ )
181
+
182
+ if "depth" in sample:
183
+ sample["depth"] = cv2.resize(
184
+ sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
185
+ )
186
+
187
+ sample["mask"] = cv2.resize(
188
+ sample["mask"].astype(np.float32),
189
+ (width, height),
190
+ interpolation=cv2.INTER_NEAREST,
191
+ )
192
+ sample["mask"] = sample["mask"].astype(bool)
193
+
194
+ return sample
195
+
196
+
197
+ class NormalizeImage(object):
198
+ """Normlize image by given mean and std.
199
+ """
200
+
201
+ def __init__(self, mean, std):
202
+ self.__mean = mean
203
+ self.__std = std
204
+
205
+ def __call__(self, sample):
206
+ sample["image"] = (sample["image"] - self.__mean) / self.__std
207
+
208
+ return sample
209
+
210
+
211
+ class PrepareForNet(object):
212
+ """Prepare sample for usage as network input.
213
+ """
214
+
215
+ def __init__(self):
216
+ pass
217
+
218
+ def __call__(self, sample):
219
+ image = np.transpose(sample["image"], (2, 0, 1))
220
+ sample["image"] = np.ascontiguousarray(image).astype(np.float32)
221
+
222
+ if "mask" in sample:
223
+ sample["mask"] = sample["mask"].astype(np.float32)
224
+ sample["mask"] = np.ascontiguousarray(sample["mask"])
225
+
226
+ if "disparity" in sample:
227
+ disparity = sample["disparity"].astype(np.float32)
228
+ sample["disparity"] = np.ascontiguousarray(disparity)
229
+
230
+ if "depth" in sample:
231
+ depth = sample["depth"].astype(np.float32)
232
+ sample["depth"] = np.ascontiguousarray(depth)
233
+
234
+ return sample
annotator/midas/midas/vit.py ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import timm
4
+ import types
5
+ import math
6
+ import torch.nn.functional as F
7
+
8
+
9
+ class Slice(nn.Module):
10
+ def __init__(self, start_index=1):
11
+ super(Slice, self).__init__()
12
+ self.start_index = start_index
13
+
14
+ def forward(self, x):
15
+ return x[:, self.start_index :]
16
+
17
+
18
+ class AddReadout(nn.Module):
19
+ def __init__(self, start_index=1):
20
+ super(AddReadout, self).__init__()
21
+ self.start_index = start_index
22
+
23
+ def forward(self, x):
24
+ if self.start_index == 2:
25
+ readout = (x[:, 0] + x[:, 1]) / 2
26
+ else:
27
+ readout = x[:, 0]
28
+ return x[:, self.start_index :] + readout.unsqueeze(1)
29
+
30
+
31
+ class ProjectReadout(nn.Module):
32
+ def __init__(self, in_features, start_index=1):
33
+ super(ProjectReadout, self).__init__()
34
+ self.start_index = start_index
35
+
36
+ self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
37
+
38
+ def forward(self, x):
39
+ readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
40
+ features = torch.cat((x[:, self.start_index :], readout), -1)
41
+
42
+ return self.project(features)
43
+
44
+
45
+ class Transpose(nn.Module):
46
+ def __init__(self, dim0, dim1):
47
+ super(Transpose, self).__init__()
48
+ self.dim0 = dim0
49
+ self.dim1 = dim1
50
+
51
+ def forward(self, x):
52
+ x = x.transpose(self.dim0, self.dim1)
53
+ return x
54
+
55
+
56
+ def forward_vit(pretrained, x):
57
+ b, c, h, w = x.shape
58
+
59
+ glob = pretrained.model.forward_flex(x)
60
+
61
+ layer_1 = pretrained.activations["1"]
62
+ layer_2 = pretrained.activations["2"]
63
+ layer_3 = pretrained.activations["3"]
64
+ layer_4 = pretrained.activations["4"]
65
+
66
+ layer_1 = pretrained.act_postprocess1[0:2](layer_1)
67
+ layer_2 = pretrained.act_postprocess2[0:2](layer_2)
68
+ layer_3 = pretrained.act_postprocess3[0:2](layer_3)
69
+ layer_4 = pretrained.act_postprocess4[0:2](layer_4)
70
+
71
+ unflatten = nn.Sequential(
72
+ nn.Unflatten(
73
+ 2,
74
+ torch.Size(
75
+ [
76
+ h // pretrained.model.patch_size[1],
77
+ w // pretrained.model.patch_size[0],
78
+ ]
79
+ ),
80
+ )
81
+ )
82
+
83
+ if layer_1.ndim == 3:
84
+ layer_1 = unflatten(layer_1)
85
+ if layer_2.ndim == 3:
86
+ layer_2 = unflatten(layer_2)
87
+ if layer_3.ndim == 3:
88
+ layer_3 = unflatten(layer_3)
89
+ if layer_4.ndim == 3:
90
+ layer_4 = unflatten(layer_4)
91
+
92
+ layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
93
+ layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
94
+ layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
95
+ layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
96
+
97
+ return layer_1, layer_2, layer_3, layer_4
98
+
99
+
100
+ def _resize_pos_embed(self, posemb, gs_h, gs_w):
101
+ posemb_tok, posemb_grid = (
102
+ posemb[:, : self.start_index],
103
+ posemb[0, self.start_index :],
104
+ )
105
+
106
+ gs_old = int(math.sqrt(len(posemb_grid)))
107
+
108
+ posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
109
+ posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
110
+ posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
111
+
112
+ posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
113
+
114
+ return posemb
115
+
116
+
117
+ def forward_flex(self, x):
118
+ b, c, h, w = x.shape
119
+
120
+ pos_embed = self._resize_pos_embed(
121
+ self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
122
+ )
123
+
124
+ B = x.shape[0]
125
+
126
+ if hasattr(self.patch_embed, "backbone"):
127
+ x = self.patch_embed.backbone(x)
128
+ if isinstance(x, (list, tuple)):
129
+ x = x[-1] # last feature if backbone outputs list/tuple of features
130
+
131
+ x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
132
+
133
+ if getattr(self, "dist_token", None) is not None:
134
+ cls_tokens = self.cls_token.expand(
135
+ B, -1, -1
136
+ ) # stole cls_tokens impl from Phil Wang, thanks
137
+ dist_token = self.dist_token.expand(B, -1, -1)
138
+ x = torch.cat((cls_tokens, dist_token, x), dim=1)
139
+ else:
140
+ cls_tokens = self.cls_token.expand(
141
+ B, -1, -1
142
+ ) # stole cls_tokens impl from Phil Wang, thanks
143
+ x = torch.cat((cls_tokens, x), dim=1)
144
+
145
+ x = x + pos_embed
146
+ x = self.pos_drop(x)
147
+
148
+ for blk in self.blocks:
149
+ x = blk(x)
150
+
151
+ x = self.norm(x)
152
+
153
+ return x
154
+
155
+
156
+ activations = {}
157
+
158
+
159
+ def get_activation(name):
160
+ def hook(model, input, output):
161
+ activations[name] = output
162
+
163
+ return hook
164
+
165
+
166
+ def get_readout_oper(vit_features, features, use_readout, start_index=1):
167
+ if use_readout == "ignore":
168
+ readout_oper = [Slice(start_index)] * len(features)
169
+ elif use_readout == "add":
170
+ readout_oper = [AddReadout(start_index)] * len(features)
171
+ elif use_readout == "project":
172
+ readout_oper = [
173
+ ProjectReadout(vit_features, start_index) for out_feat in features
174
+ ]
175
+ else:
176
+ assert (
177
+ False
178
+ ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
179
+
180
+ return readout_oper
181
+
182
+
183
+ def _make_vit_b16_backbone(
184
+ model,
185
+ features=[96, 192, 384, 768],
186
+ size=[384, 384],
187
+ hooks=[2, 5, 8, 11],
188
+ vit_features=768,
189
+ use_readout="ignore",
190
+ start_index=1,
191
+ ):
192
+ pretrained = nn.Module()
193
+
194
+ pretrained.model = model
195
+ pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
196
+ pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
197
+ pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
198
+ pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
199
+
200
+ pretrained.activations = activations
201
+
202
+ readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
203
+
204
+ # 32, 48, 136, 384
205
+ pretrained.act_postprocess1 = nn.Sequential(
206
+ readout_oper[0],
207
+ Transpose(1, 2),
208
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
209
+ nn.Conv2d(
210
+ in_channels=vit_features,
211
+ out_channels=features[0],
212
+ kernel_size=1,
213
+ stride=1,
214
+ padding=0,
215
+ ),
216
+ nn.ConvTranspose2d(
217
+ in_channels=features[0],
218
+ out_channels=features[0],
219
+ kernel_size=4,
220
+ stride=4,
221
+ padding=0,
222
+ bias=True,
223
+ dilation=1,
224
+ groups=1,
225
+ ),
226
+ )
227
+
228
+ pretrained.act_postprocess2 = nn.Sequential(
229
+ readout_oper[1],
230
+ Transpose(1, 2),
231
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
232
+ nn.Conv2d(
233
+ in_channels=vit_features,
234
+ out_channels=features[1],
235
+ kernel_size=1,
236
+ stride=1,
237
+ padding=0,
238
+ ),
239
+ nn.ConvTranspose2d(
240
+ in_channels=features[1],
241
+ out_channels=features[1],
242
+ kernel_size=2,
243
+ stride=2,
244
+ padding=0,
245
+ bias=True,
246
+ dilation=1,
247
+ groups=1,
248
+ ),
249
+ )
250
+
251
+ pretrained.act_postprocess3 = nn.Sequential(
252
+ readout_oper[2],
253
+ Transpose(1, 2),
254
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
255
+ nn.Conv2d(
256
+ in_channels=vit_features,
257
+ out_channels=features[2],
258
+ kernel_size=1,
259
+ stride=1,
260
+ padding=0,
261
+ ),
262
+ )
263
+
264
+ pretrained.act_postprocess4 = nn.Sequential(
265
+ readout_oper[3],
266
+ Transpose(1, 2),
267
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
268
+ nn.Conv2d(
269
+ in_channels=vit_features,
270
+ out_channels=features[3],
271
+ kernel_size=1,
272
+ stride=1,
273
+ padding=0,
274
+ ),
275
+ nn.Conv2d(
276
+ in_channels=features[3],
277
+ out_channels=features[3],
278
+ kernel_size=3,
279
+ stride=2,
280
+ padding=1,
281
+ ),
282
+ )
283
+
284
+ pretrained.model.start_index = start_index
285
+ pretrained.model.patch_size = [16, 16]
286
+
287
+ # We inject this function into the VisionTransformer instances so that
288
+ # we can use it with interpolated position embeddings without modifying the library source.
289
+ pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
290
+ pretrained.model._resize_pos_embed = types.MethodType(
291
+ _resize_pos_embed, pretrained.model
292
+ )
293
+
294
+ return pretrained
295
+
296
+
297
+ def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
298
+ model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
299
+
300
+ hooks = [5, 11, 17, 23] if hooks == None else hooks
301
+ return _make_vit_b16_backbone(
302
+ model,
303
+ features=[256, 512, 1024, 1024],
304
+ hooks=hooks,
305
+ vit_features=1024,
306
+ use_readout=use_readout,
307
+ )
308
+
309
+
310
+ def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
311
+ model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
312
+
313
+ hooks = [2, 5, 8, 11] if hooks == None else hooks
314
+ return _make_vit_b16_backbone(
315
+ model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
316
+ )
317
+
318
+
319
+ def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
320
+ model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
321
+
322
+ hooks = [2, 5, 8, 11] if hooks == None else hooks
323
+ return _make_vit_b16_backbone(
324
+ model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
325
+ )
326
+
327
+
328
+ def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
329
+ model = timm.create_model(
330
+ "vit_deit_base_distilled_patch16_384", pretrained=pretrained
331
+ )
332
+
333
+ hooks = [2, 5, 8, 11] if hooks == None else hooks
334
+ return _make_vit_b16_backbone(
335
+ model,
336
+ features=[96, 192, 384, 768],
337
+ hooks=hooks,
338
+ use_readout=use_readout,
339
+ start_index=2,
340
+ )
341
+
342
+
343
+ def _make_vit_b_rn50_backbone(
344
+ model,
345
+ features=[256, 512, 768, 768],
346
+ size=[384, 384],
347
+ hooks=[0, 1, 8, 11],
348
+ vit_features=768,
349
+ use_vit_only=False,
350
+ use_readout="ignore",
351
+ start_index=1,
352
+ ):
353
+ pretrained = nn.Module()
354
+
355
+ pretrained.model = model
356
+
357
+ if use_vit_only == True:
358
+ pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
359
+ pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
360
+ else:
361
+ pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
362
+ get_activation("1")
363
+ )
364
+ pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
365
+ get_activation("2")
366
+ )
367
+
368
+ pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
369
+ pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
370
+
371
+ pretrained.activations = activations
372
+
373
+ readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
374
+
375
+ if use_vit_only == True:
376
+ pretrained.act_postprocess1 = nn.Sequential(
377
+ readout_oper[0],
378
+ Transpose(1, 2),
379
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
380
+ nn.Conv2d(
381
+ in_channels=vit_features,
382
+ out_channels=features[0],
383
+ kernel_size=1,
384
+ stride=1,
385
+ padding=0,
386
+ ),
387
+ nn.ConvTranspose2d(
388
+ in_channels=features[0],
389
+ out_channels=features[0],
390
+ kernel_size=4,
391
+ stride=4,
392
+ padding=0,
393
+ bias=True,
394
+ dilation=1,
395
+ groups=1,
396
+ ),
397
+ )
398
+
399
+ pretrained.act_postprocess2 = nn.Sequential(
400
+ readout_oper[1],
401
+ Transpose(1, 2),
402
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
403
+ nn.Conv2d(
404
+ in_channels=vit_features,
405
+ out_channels=features[1],
406
+ kernel_size=1,
407
+ stride=1,
408
+ padding=0,
409
+ ),
410
+ nn.ConvTranspose2d(
411
+ in_channels=features[1],
412
+ out_channels=features[1],
413
+ kernel_size=2,
414
+ stride=2,
415
+ padding=0,
416
+ bias=True,
417
+ dilation=1,
418
+ groups=1,
419
+ ),
420
+ )
421
+ else:
422
+ pretrained.act_postprocess1 = nn.Sequential(
423
+ nn.Identity(), nn.Identity(), nn.Identity()
424
+ )
425
+ pretrained.act_postprocess2 = nn.Sequential(
426
+ nn.Identity(), nn.Identity(), nn.Identity()
427
+ )
428
+
429
+ pretrained.act_postprocess3 = nn.Sequential(
430
+ readout_oper[2],
431
+ Transpose(1, 2),
432
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
433
+ nn.Conv2d(
434
+ in_channels=vit_features,
435
+ out_channels=features[2],
436
+ kernel_size=1,
437
+ stride=1,
438
+ padding=0,
439
+ ),
440
+ )
441
+
442
+ pretrained.act_postprocess4 = nn.Sequential(
443
+ readout_oper[3],
444
+ Transpose(1, 2),
445
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
446
+ nn.Conv2d(
447
+ in_channels=vit_features,
448
+ out_channels=features[3],
449
+ kernel_size=1,
450
+ stride=1,
451
+ padding=0,
452
+ ),
453
+ nn.Conv2d(
454
+ in_channels=features[3],
455
+ out_channels=features[3],
456
+ kernel_size=3,
457
+ stride=2,
458
+ padding=1,
459
+ ),
460
+ )
461
+
462
+ pretrained.model.start_index = start_index
463
+ pretrained.model.patch_size = [16, 16]
464
+
465
+ # We inject this function into the VisionTransformer instances so that
466
+ # we can use it with interpolated position embeddings without modifying the library source.
467
+ pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
468
+
469
+ # We inject this function into the VisionTransformer instances so that
470
+ # we can use it with interpolated position embeddings without modifying the library source.
471
+ pretrained.model._resize_pos_embed = types.MethodType(
472
+ _resize_pos_embed, pretrained.model
473
+ )
474
+
475
+ return pretrained
476
+
477
+
478
+ def _make_pretrained_vitb_rn50_384(
479
+ pretrained, use_readout="ignore", hooks=None, use_vit_only=False
480
+ ):
481
+ model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
482
+
483
+ hooks = [0, 1, 8, 11] if hooks == None else hooks
484
+ return _make_vit_b_rn50_backbone(
485
+ model,
486
+ features=[256, 512, 768, 768],
487
+ size=[384, 384],
488
+ hooks=hooks,
489
+ use_vit_only=use_vit_only,
490
+ use_readout=use_readout,
491
+ )
annotator/midas/utils.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Utils for monoDepth."""
2
+ import sys
3
+ import re
4
+ import numpy as np
5
+ import cv2
6
+ import torch
7
+
8
+
9
+ def read_pfm(path):
10
+ """Read pfm file.
11
+
12
+ Args:
13
+ path (str): path to file
14
+
15
+ Returns:
16
+ tuple: (data, scale)
17
+ """
18
+ with open(path, "rb") as file:
19
+
20
+ color = None
21
+ width = None
22
+ height = None
23
+ scale = None
24
+ endian = None
25
+
26
+ header = file.readline().rstrip()
27
+ if header.decode("ascii") == "PF":
28
+ color = True
29
+ elif header.decode("ascii") == "Pf":
30
+ color = False
31
+ else:
32
+ raise Exception("Not a PFM file: " + path)
33
+
34
+ dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
35
+ if dim_match:
36
+ width, height = list(map(int, dim_match.groups()))
37
+ else:
38
+ raise Exception("Malformed PFM header.")
39
+
40
+ scale = float(file.readline().decode("ascii").rstrip())
41
+ if scale < 0:
42
+ # little-endian
43
+ endian = "<"
44
+ scale = -scale
45
+ else:
46
+ # big-endian
47
+ endian = ">"
48
+
49
+ data = np.fromfile(file, endian + "f")
50
+ shape = (height, width, 3) if color else (height, width)
51
+
52
+ data = np.reshape(data, shape)
53
+ data = np.flipud(data)
54
+
55
+ return data, scale
56
+
57
+
58
+ def write_pfm(path, image, scale=1):
59
+ """Write pfm file.
60
+
61
+ Args:
62
+ path (str): pathto file
63
+ image (array): data
64
+ scale (int, optional): Scale. Defaults to 1.
65
+ """
66
+
67
+ with open(path, "wb") as file:
68
+ color = None
69
+
70
+ if image.dtype.name != "float32":
71
+ raise Exception("Image dtype must be float32.")
72
+
73
+ image = np.flipud(image)
74
+
75
+ if len(image.shape) == 3 and image.shape[2] == 3: # color image
76
+ color = True
77
+ elif (
78
+ len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
79
+ ): # greyscale
80
+ color = False
81
+ else:
82
+ raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
83
+
84
+ file.write("PF\n" if color else "Pf\n".encode())
85
+ file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
86
+
87
+ endian = image.dtype.byteorder
88
+
89
+ if endian == "<" or endian == "=" and sys.byteorder == "little":
90
+ scale = -scale
91
+
92
+ file.write("%f\n".encode() % scale)
93
+
94
+ image.tofile(file)
95
+
96
+
97
+ def read_image(path):
98
+ """Read image and output RGB image (0-1).
99
+
100
+ Args:
101
+ path (str): path to file
102
+
103
+ Returns:
104
+ array: RGB image (0-1)
105
+ """
106
+ img = cv2.imread(path)
107
+
108
+ if img.ndim == 2:
109
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
110
+
111
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
112
+
113
+ return img
114
+
115
+
116
+ def resize_image(img):
117
+ """Resize image and make it fit for network.
118
+
119
+ Args:
120
+ img (array): image
121
+
122
+ Returns:
123
+ tensor: data ready for network
124
+ """
125
+ height_orig = img.shape[0]
126
+ width_orig = img.shape[1]
127
+
128
+ if width_orig > height_orig:
129
+ scale = width_orig / 384
130
+ else:
131
+ scale = height_orig / 384
132
+
133
+ height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
134
+ width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
135
+
136
+ img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
137
+
138
+ img_resized = (
139
+ torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
140
+ )
141
+ img_resized = img_resized.unsqueeze(0)
142
+
143
+ return img_resized
144
+
145
+
146
+ def resize_depth(depth, width, height):
147
+ """Resize depth map and bring to CPU (numpy).
148
+
149
+ Args:
150
+ depth (tensor): depth
151
+ width (int): image width
152
+ height (int): image height
153
+
154
+ Returns:
155
+ array: processed depth
156
+ """
157
+ depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
158
+
159
+ depth_resized = cv2.resize(
160
+ depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
161
+ )
162
+
163
+ return depth_resized
164
+
165
+ def write_depth(path, depth, bits=1):
166
+ """Write depth map to pfm and png file.
167
+
168
+ Args:
169
+ path (str): filepath without extension
170
+ depth (array): depth
171
+ """
172
+ write_pfm(path + ".pfm", depth.astype(np.float32))
173
+
174
+ depth_min = depth.min()
175
+ depth_max = depth.max()
176
+
177
+ max_val = (2**(8*bits))-1
178
+
179
+ if depth_max - depth_min > np.finfo("float").eps:
180
+ out = max_val * (depth - depth_min) / (depth_max - depth_min)
181
+ else:
182
+ out = np.zeros(depth.shape, dtype=depth.type)
183
+
184
+ if bits == 1:
185
+ cv2.imwrite(path + ".png", out.astype("uint8"))
186
+ elif bits == 2:
187
+ cv2.imwrite(path + ".png", out.astype("uint16"))
188
+
189
+ return
annotator/mlsd/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "{}"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2021-present NAVER Corp.
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
annotator/mlsd/__init__.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MLSD Line Detection
2
+ # From https://github.com/navervision/mlsd
3
+ # Apache-2.0 license
4
+
5
+ import cv2
6
+ import numpy as np
7
+ import torch
8
+ import os
9
+
10
+ from einops import rearrange
11
+ from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny
12
+ from .models.mbv2_mlsd_large import MobileV2_MLSD_Large
13
+ from .utils import pred_lines
14
+
15
+ from annotator.util import annotator_ckpts_path
16
+
17
+
18
+ remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/mlsd_large_512_fp32.pth"
19
+
20
+
21
+ class MLSDdetector:
22
+ def __init__(self):
23
+ model_path = os.path.join(annotator_ckpts_path, "mlsd_large_512_fp32.pth")
24
+ if not os.path.exists(model_path):
25
+ from basicsr.utils.download_util import load_file_from_url
26
+ load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
27
+ model = MobileV2_MLSD_Large()
28
+ model.load_state_dict(torch.load(model_path), strict=True)
29
+ self.model = model.cuda().eval()
30
+
31
+ def __call__(self, input_image, thr_v, thr_d):
32
+ assert input_image.ndim == 3
33
+ img = input_image
34
+ img_output = np.zeros_like(img)
35
+ try:
36
+ with torch.no_grad():
37
+ lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d)
38
+ for line in lines:
39
+ x_start, y_start, x_end, y_end = [int(val) for val in line]
40
+ cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1)
41
+ except Exception as e:
42
+ pass
43
+ return img_output[:, :, 0]
annotator/mlsd/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (1.92 kB). View file
 
annotator/mlsd/models/mbv2_mlsd_large.py ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.utils.model_zoo as model_zoo
6
+ from torch.nn import functional as F
7
+
8
+
9
+ class BlockTypeA(nn.Module):
10
+ def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
11
+ super(BlockTypeA, self).__init__()
12
+ self.conv1 = nn.Sequential(
13
+ nn.Conv2d(in_c2, out_c2, kernel_size=1),
14
+ nn.BatchNorm2d(out_c2),
15
+ nn.ReLU(inplace=True)
16
+ )
17
+ self.conv2 = nn.Sequential(
18
+ nn.Conv2d(in_c1, out_c1, kernel_size=1),
19
+ nn.BatchNorm2d(out_c1),
20
+ nn.ReLU(inplace=True)
21
+ )
22
+ self.upscale = upscale
23
+
24
+ def forward(self, a, b):
25
+ b = self.conv1(b)
26
+ a = self.conv2(a)
27
+ if self.upscale:
28
+ b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
29
+ return torch.cat((a, b), dim=1)
30
+
31
+
32
+ class BlockTypeB(nn.Module):
33
+ def __init__(self, in_c, out_c):
34
+ super(BlockTypeB, self).__init__()
35
+ self.conv1 = nn.Sequential(
36
+ nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
37
+ nn.BatchNorm2d(in_c),
38
+ nn.ReLU()
39
+ )
40
+ self.conv2 = nn.Sequential(
41
+ nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
42
+ nn.BatchNorm2d(out_c),
43
+ nn.ReLU()
44
+ )
45
+
46
+ def forward(self, x):
47
+ x = self.conv1(x) + x
48
+ x = self.conv2(x)
49
+ return x
50
+
51
+ class BlockTypeC(nn.Module):
52
+ def __init__(self, in_c, out_c):
53
+ super(BlockTypeC, self).__init__()
54
+ self.conv1 = nn.Sequential(
55
+ nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
56
+ nn.BatchNorm2d(in_c),
57
+ nn.ReLU()
58
+ )
59
+ self.conv2 = nn.Sequential(
60
+ nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
61
+ nn.BatchNorm2d(in_c),
62
+ nn.ReLU()
63
+ )
64
+ self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
65
+
66
+ def forward(self, x):
67
+ x = self.conv1(x)
68
+ x = self.conv2(x)
69
+ x = self.conv3(x)
70
+ return x
71
+
72
+ def _make_divisible(v, divisor, min_value=None):
73
+ """
74
+ This function is taken from the original tf repo.
75
+ It ensures that all layers have a channel number that is divisible by 8
76
+ It can be seen here:
77
+ https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
78
+ :param v:
79
+ :param divisor:
80
+ :param min_value:
81
+ :return:
82
+ """
83
+ if min_value is None:
84
+ min_value = divisor
85
+ new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
86
+ # Make sure that round down does not go down by more than 10%.
87
+ if new_v < 0.9 * v:
88
+ new_v += divisor
89
+ return new_v
90
+
91
+
92
+ class ConvBNReLU(nn.Sequential):
93
+ def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
94
+ self.channel_pad = out_planes - in_planes
95
+ self.stride = stride
96
+ #padding = (kernel_size - 1) // 2
97
+
98
+ # TFLite uses slightly different padding than PyTorch
99
+ if stride == 2:
100
+ padding = 0
101
+ else:
102
+ padding = (kernel_size - 1) // 2
103
+
104
+ super(ConvBNReLU, self).__init__(
105
+ nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
106
+ nn.BatchNorm2d(out_planes),
107
+ nn.ReLU6(inplace=True)
108
+ )
109
+ self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
110
+
111
+
112
+ def forward(self, x):
113
+ # TFLite uses different padding
114
+ if self.stride == 2:
115
+ x = F.pad(x, (0, 1, 0, 1), "constant", 0)
116
+ #print(x.shape)
117
+
118
+ for module in self:
119
+ if not isinstance(module, nn.MaxPool2d):
120
+ x = module(x)
121
+ return x
122
+
123
+
124
+ class InvertedResidual(nn.Module):
125
+ def __init__(self, inp, oup, stride, expand_ratio):
126
+ super(InvertedResidual, self).__init__()
127
+ self.stride = stride
128
+ assert stride in [1, 2]
129
+
130
+ hidden_dim = int(round(inp * expand_ratio))
131
+ self.use_res_connect = self.stride == 1 and inp == oup
132
+
133
+ layers = []
134
+ if expand_ratio != 1:
135
+ # pw
136
+ layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
137
+ layers.extend([
138
+ # dw
139
+ ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
140
+ # pw-linear
141
+ nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
142
+ nn.BatchNorm2d(oup),
143
+ ])
144
+ self.conv = nn.Sequential(*layers)
145
+
146
+ def forward(self, x):
147
+ if self.use_res_connect:
148
+ return x + self.conv(x)
149
+ else:
150
+ return self.conv(x)
151
+
152
+
153
+ class MobileNetV2(nn.Module):
154
+ def __init__(self, pretrained=True):
155
+ """
156
+ MobileNet V2 main class
157
+ Args:
158
+ num_classes (int): Number of classes
159
+ width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
160
+ inverted_residual_setting: Network structure
161
+ round_nearest (int): Round the number of channels in each layer to be a multiple of this number
162
+ Set to 1 to turn off rounding
163
+ block: Module specifying inverted residual building block for mobilenet
164
+ """
165
+ super(MobileNetV2, self).__init__()
166
+
167
+ block = InvertedResidual
168
+ input_channel = 32
169
+ last_channel = 1280
170
+ width_mult = 1.0
171
+ round_nearest = 8
172
+
173
+ inverted_residual_setting = [
174
+ # t, c, n, s
175
+ [1, 16, 1, 1],
176
+ [6, 24, 2, 2],
177
+ [6, 32, 3, 2],
178
+ [6, 64, 4, 2],
179
+ [6, 96, 3, 1],
180
+ #[6, 160, 3, 2],
181
+ #[6, 320, 1, 1],
182
+ ]
183
+
184
+ # only check the first element, assuming user knows t,c,n,s are required
185
+ if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
186
+ raise ValueError("inverted_residual_setting should be non-empty "
187
+ "or a 4-element list, got {}".format(inverted_residual_setting))
188
+
189
+ # building first layer
190
+ input_channel = _make_divisible(input_channel * width_mult, round_nearest)
191
+ self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
192
+ features = [ConvBNReLU(4, input_channel, stride=2)]
193
+ # building inverted residual blocks
194
+ for t, c, n, s in inverted_residual_setting:
195
+ output_channel = _make_divisible(c * width_mult, round_nearest)
196
+ for i in range(n):
197
+ stride = s if i == 0 else 1
198
+ features.append(block(input_channel, output_channel, stride, expand_ratio=t))
199
+ input_channel = output_channel
200
+
201
+ self.features = nn.Sequential(*features)
202
+ self.fpn_selected = [1, 3, 6, 10, 13]
203
+ # weight initialization
204
+ for m in self.modules():
205
+ if isinstance(m, nn.Conv2d):
206
+ nn.init.kaiming_normal_(m.weight, mode='fan_out')
207
+ if m.bias is not None:
208
+ nn.init.zeros_(m.bias)
209
+ elif isinstance(m, nn.BatchNorm2d):
210
+ nn.init.ones_(m.weight)
211
+ nn.init.zeros_(m.bias)
212
+ elif isinstance(m, nn.Linear):
213
+ nn.init.normal_(m.weight, 0, 0.01)
214
+ nn.init.zeros_(m.bias)
215
+ if pretrained:
216
+ self._load_pretrained_model()
217
+
218
+ def _forward_impl(self, x):
219
+ # This exists since TorchScript doesn't support inheritance, so the superclass method
220
+ # (this one) needs to have a name other than `forward` that can be accessed in a subclass
221
+ fpn_features = []
222
+ for i, f in enumerate(self.features):
223
+ if i > self.fpn_selected[-1]:
224
+ break
225
+ x = f(x)
226
+ if i in self.fpn_selected:
227
+ fpn_features.append(x)
228
+
229
+ c1, c2, c3, c4, c5 = fpn_features
230
+ return c1, c2, c3, c4, c5
231
+
232
+
233
+ def forward(self, x):
234
+ return self._forward_impl(x)
235
+
236
+ def _load_pretrained_model(self):
237
+ pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
238
+ model_dict = {}
239
+ state_dict = self.state_dict()
240
+ for k, v in pretrain_dict.items():
241
+ if k in state_dict:
242
+ model_dict[k] = v
243
+ state_dict.update(model_dict)
244
+ self.load_state_dict(state_dict)
245
+
246
+
247
+ class MobileV2_MLSD_Large(nn.Module):
248
+ def __init__(self):
249
+ super(MobileV2_MLSD_Large, self).__init__()
250
+
251
+ self.backbone = MobileNetV2(pretrained=False)
252
+ ## A, B
253
+ self.block15 = BlockTypeA(in_c1= 64, in_c2= 96,
254
+ out_c1= 64, out_c2=64,
255
+ upscale=False)
256
+ self.block16 = BlockTypeB(128, 64)
257
+
258
+ ## A, B
259
+ self.block17 = BlockTypeA(in_c1 = 32, in_c2 = 64,
260
+ out_c1= 64, out_c2= 64)
261
+ self.block18 = BlockTypeB(128, 64)
262
+
263
+ ## A, B
264
+ self.block19 = BlockTypeA(in_c1=24, in_c2=64,
265
+ out_c1=64, out_c2=64)
266
+ self.block20 = BlockTypeB(128, 64)
267
+
268
+ ## A, B, C
269
+ self.block21 = BlockTypeA(in_c1=16, in_c2=64,
270
+ out_c1=64, out_c2=64)
271
+ self.block22 = BlockTypeB(128, 64)
272
+
273
+ self.block23 = BlockTypeC(64, 16)
274
+
275
+ def forward(self, x):
276
+ c1, c2, c3, c4, c5 = self.backbone(x)
277
+
278
+ x = self.block15(c4, c5)
279
+ x = self.block16(x)
280
+
281
+ x = self.block17(c3, x)
282
+ x = self.block18(x)
283
+
284
+ x = self.block19(c2, x)
285
+ x = self.block20(x)
286
+
287
+ x = self.block21(c1, x)
288
+ x = self.block22(x)
289
+ x = self.block23(x)
290
+ x = x[:, 7:, :, :]
291
+
292
+ return x
annotator/mlsd/models/mbv2_mlsd_tiny.py ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.utils.model_zoo as model_zoo
6
+ from torch.nn import functional as F
7
+
8
+
9
+ class BlockTypeA(nn.Module):
10
+ def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
11
+ super(BlockTypeA, self).__init__()
12
+ self.conv1 = nn.Sequential(
13
+ nn.Conv2d(in_c2, out_c2, kernel_size=1),
14
+ nn.BatchNorm2d(out_c2),
15
+ nn.ReLU(inplace=True)
16
+ )
17
+ self.conv2 = nn.Sequential(
18
+ nn.Conv2d(in_c1, out_c1, kernel_size=1),
19
+ nn.BatchNorm2d(out_c1),
20
+ nn.ReLU(inplace=True)
21
+ )
22
+ self.upscale = upscale
23
+
24
+ def forward(self, a, b):
25
+ b = self.conv1(b)
26
+ a = self.conv2(a)
27
+ b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
28
+ return torch.cat((a, b), dim=1)
29
+
30
+
31
+ class BlockTypeB(nn.Module):
32
+ def __init__(self, in_c, out_c):
33
+ super(BlockTypeB, self).__init__()
34
+ self.conv1 = nn.Sequential(
35
+ nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
36
+ nn.BatchNorm2d(in_c),
37
+ nn.ReLU()
38
+ )
39
+ self.conv2 = nn.Sequential(
40
+ nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
41
+ nn.BatchNorm2d(out_c),
42
+ nn.ReLU()
43
+ )
44
+
45
+ def forward(self, x):
46
+ x = self.conv1(x) + x
47
+ x = self.conv2(x)
48
+ return x
49
+
50
+ class BlockTypeC(nn.Module):
51
+ def __init__(self, in_c, out_c):
52
+ super(BlockTypeC, self).__init__()
53
+ self.conv1 = nn.Sequential(
54
+ nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
55
+ nn.BatchNorm2d(in_c),
56
+ nn.ReLU()
57
+ )
58
+ self.conv2 = nn.Sequential(
59
+ nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
60
+ nn.BatchNorm2d(in_c),
61
+ nn.ReLU()
62
+ )
63
+ self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
64
+
65
+ def forward(self, x):
66
+ x = self.conv1(x)
67
+ x = self.conv2(x)
68
+ x = self.conv3(x)
69
+ return x
70
+
71
+ def _make_divisible(v, divisor, min_value=None):
72
+ """
73
+ This function is taken from the original tf repo.
74
+ It ensures that all layers have a channel number that is divisible by 8
75
+ It can be seen here:
76
+ https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
77
+ :param v:
78
+ :param divisor:
79
+ :param min_value:
80
+ :return:
81
+ """
82
+ if min_value is None:
83
+ min_value = divisor
84
+ new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
85
+ # Make sure that round down does not go down by more than 10%.
86
+ if new_v < 0.9 * v:
87
+ new_v += divisor
88
+ return new_v
89
+
90
+
91
+ class ConvBNReLU(nn.Sequential):
92
+ def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
93
+ self.channel_pad = out_planes - in_planes
94
+ self.stride = stride
95
+ #padding = (kernel_size - 1) // 2
96
+
97
+ # TFLite uses slightly different padding than PyTorch
98
+ if stride == 2:
99
+ padding = 0
100
+ else:
101
+ padding = (kernel_size - 1) // 2
102
+
103
+ super(ConvBNReLU, self).__init__(
104
+ nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
105
+ nn.BatchNorm2d(out_planes),
106
+ nn.ReLU6(inplace=True)
107
+ )
108
+ self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
109
+
110
+
111
+ def forward(self, x):
112
+ # TFLite uses different padding
113
+ if self.stride == 2:
114
+ x = F.pad(x, (0, 1, 0, 1), "constant", 0)
115
+ #print(x.shape)
116
+
117
+ for module in self:
118
+ if not isinstance(module, nn.MaxPool2d):
119
+ x = module(x)
120
+ return x
121
+
122
+
123
+ class InvertedResidual(nn.Module):
124
+ def __init__(self, inp, oup, stride, expand_ratio):
125
+ super(InvertedResidual, self).__init__()
126
+ self.stride = stride
127
+ assert stride in [1, 2]
128
+
129
+ hidden_dim = int(round(inp * expand_ratio))
130
+ self.use_res_connect = self.stride == 1 and inp == oup
131
+
132
+ layers = []
133
+ if expand_ratio != 1:
134
+ # pw
135
+ layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
136
+ layers.extend([
137
+ # dw
138
+ ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
139
+ # pw-linear
140
+ nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
141
+ nn.BatchNorm2d(oup),
142
+ ])
143
+ self.conv = nn.Sequential(*layers)
144
+
145
+ def forward(self, x):
146
+ if self.use_res_connect:
147
+ return x + self.conv(x)
148
+ else:
149
+ return self.conv(x)
150
+
151
+
152
+ class MobileNetV2(nn.Module):
153
+ def __init__(self, pretrained=True):
154
+ """
155
+ MobileNet V2 main class
156
+ Args:
157
+ num_classes (int): Number of classes
158
+ width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
159
+ inverted_residual_setting: Network structure
160
+ round_nearest (int): Round the number of channels in each layer to be a multiple of this number
161
+ Set to 1 to turn off rounding
162
+ block: Module specifying inverted residual building block for mobilenet
163
+ """
164
+ super(MobileNetV2, self).__init__()
165
+
166
+ block = InvertedResidual
167
+ input_channel = 32
168
+ last_channel = 1280
169
+ width_mult = 1.0
170
+ round_nearest = 8
171
+
172
+ inverted_residual_setting = [
173
+ # t, c, n, s
174
+ [1, 16, 1, 1],
175
+ [6, 24, 2, 2],
176
+ [6, 32, 3, 2],
177
+ [6, 64, 4, 2],
178
+ #[6, 96, 3, 1],
179
+ #[6, 160, 3, 2],
180
+ #[6, 320, 1, 1],
181
+ ]
182
+
183
+ # only check the first element, assuming user knows t,c,n,s are required
184
+ if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
185
+ raise ValueError("inverted_residual_setting should be non-empty "
186
+ "or a 4-element list, got {}".format(inverted_residual_setting))
187
+
188
+ # building first layer
189
+ input_channel = _make_divisible(input_channel * width_mult, round_nearest)
190
+ self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
191
+ features = [ConvBNReLU(4, input_channel, stride=2)]
192
+ # building inverted residual blocks
193
+ for t, c, n, s in inverted_residual_setting:
194
+ output_channel = _make_divisible(c * width_mult, round_nearest)
195
+ for i in range(n):
196
+ stride = s if i == 0 else 1
197
+ features.append(block(input_channel, output_channel, stride, expand_ratio=t))
198
+ input_channel = output_channel
199
+ self.features = nn.Sequential(*features)
200
+
201
+ self.fpn_selected = [3, 6, 10]
202
+ # weight initialization
203
+ for m in self.modules():
204
+ if isinstance(m, nn.Conv2d):
205
+ nn.init.kaiming_normal_(m.weight, mode='fan_out')
206
+ if m.bias is not None:
207
+ nn.init.zeros_(m.bias)
208
+ elif isinstance(m, nn.BatchNorm2d):
209
+ nn.init.ones_(m.weight)
210
+ nn.init.zeros_(m.bias)
211
+ elif isinstance(m, nn.Linear):
212
+ nn.init.normal_(m.weight, 0, 0.01)
213
+ nn.init.zeros_(m.bias)
214
+
215
+ #if pretrained:
216
+ # self._load_pretrained_model()
217
+
218
+ def _forward_impl(self, x):
219
+ # This exists since TorchScript doesn't support inheritance, so the superclass method
220
+ # (this one) needs to have a name other than `forward` that can be accessed in a subclass
221
+ fpn_features = []
222
+ for i, f in enumerate(self.features):
223
+ if i > self.fpn_selected[-1]:
224
+ break
225
+ x = f(x)
226
+ if i in self.fpn_selected:
227
+ fpn_features.append(x)
228
+
229
+ c2, c3, c4 = fpn_features
230
+ return c2, c3, c4
231
+
232
+
233
+ def forward(self, x):
234
+ return self._forward_impl(x)
235
+
236
+ def _load_pretrained_model(self):
237
+ pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
238
+ model_dict = {}
239
+ state_dict = self.state_dict()
240
+ for k, v in pretrain_dict.items():
241
+ if k in state_dict:
242
+ model_dict[k] = v
243
+ state_dict.update(model_dict)
244
+ self.load_state_dict(state_dict)
245
+
246
+
247
+ class MobileV2_MLSD_Tiny(nn.Module):
248
+ def __init__(self):
249
+ super(MobileV2_MLSD_Tiny, self).__init__()
250
+
251
+ self.backbone = MobileNetV2(pretrained=True)
252
+
253
+ self.block12 = BlockTypeA(in_c1= 32, in_c2= 64,
254
+ out_c1= 64, out_c2=64)
255
+ self.block13 = BlockTypeB(128, 64)
256
+
257
+ self.block14 = BlockTypeA(in_c1 = 24, in_c2 = 64,
258
+ out_c1= 32, out_c2= 32)
259
+ self.block15 = BlockTypeB(64, 64)
260
+
261
+ self.block16 = BlockTypeC(64, 16)
262
+
263
+ def forward(self, x):
264
+ c2, c3, c4 = self.backbone(x)
265
+
266
+ x = self.block12(c3, c4)
267
+ x = self.block13(x)
268
+ x = self.block14(c2, x)
269
+ x = self.block15(x)
270
+ x = self.block16(x)
271
+ x = x[:, 7:, :, :]
272
+ #print(x.shape)
273
+ x = F.interpolate(x, scale_factor=2.0, mode='bilinear', align_corners=True)
274
+
275
+ return x
annotator/mlsd/utils.py ADDED
@@ -0,0 +1,580 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ modified by lihaoweicv
3
+ pytorch version
4
+ '''
5
+
6
+ '''
7
+ M-LSD
8
+ Copyright 2021-present NAVER Corp.
9
+ Apache License v2.0
10
+ '''
11
+
12
+ import os
13
+ import numpy as np
14
+ import cv2
15
+ import torch
16
+ from torch.nn import functional as F
17
+
18
+
19
+ def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5):
20
+ '''
21
+ tpMap:
22
+ center: tpMap[1, 0, :, :]
23
+ displacement: tpMap[1, 1:5, :, :]
24
+ '''
25
+ b, c, h, w = tpMap.shape
26
+ assert b==1, 'only support bsize==1'
27
+ displacement = tpMap[:, 1:5, :, :][0]
28
+ center = tpMap[:, 0, :, :]
29
+ heat = torch.sigmoid(center)
30
+ hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2)
31
+ keep = (hmax == heat).float()
32
+ heat = heat * keep
33
+ heat = heat.reshape(-1, )
34
+
35
+ scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True)
36
+ yy = torch.floor_divide(indices, w).unsqueeze(-1)
37
+ xx = torch.fmod(indices, w).unsqueeze(-1)
38
+ ptss = torch.cat((yy, xx),dim=-1)
39
+
40
+ ptss = ptss.detach().cpu().numpy()
41
+ scores = scores.detach().cpu().numpy()
42
+ displacement = displacement.detach().cpu().numpy()
43
+ displacement = displacement.transpose((1,2,0))
44
+ return ptss, scores, displacement
45
+
46
+
47
+ def pred_lines(image, model,
48
+ input_shape=[512, 512],
49
+ score_thr=0.10,
50
+ dist_thr=20.0):
51
+ h, w, _ = image.shape
52
+ h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
53
+
54
+ resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA),
55
+ np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
56
+
57
+ resized_image = resized_image.transpose((2,0,1))
58
+ batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
59
+ batch_image = (batch_image / 127.5) - 1.0
60
+
61
+ batch_image = torch.from_numpy(batch_image).float().cuda()
62
+ outputs = model(batch_image)
63
+ pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
64
+ start = vmap[:, :, :2]
65
+ end = vmap[:, :, 2:]
66
+ dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
67
+
68
+ segments_list = []
69
+ for center, score in zip(pts, pts_score):
70
+ y, x = center
71
+ distance = dist_map[y, x]
72
+ if score > score_thr and distance > dist_thr:
73
+ disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
74
+ x_start = x + disp_x_start
75
+ y_start = y + disp_y_start
76
+ x_end = x + disp_x_end
77
+ y_end = y + disp_y_end
78
+ segments_list.append([x_start, y_start, x_end, y_end])
79
+
80
+ lines = 2 * np.array(segments_list) # 256 > 512
81
+ lines[:, 0] = lines[:, 0] * w_ratio
82
+ lines[:, 1] = lines[:, 1] * h_ratio
83
+ lines[:, 2] = lines[:, 2] * w_ratio
84
+ lines[:, 3] = lines[:, 3] * h_ratio
85
+
86
+ return lines
87
+
88
+
89
+ def pred_squares(image,
90
+ model,
91
+ input_shape=[512, 512],
92
+ params={'score': 0.06,
93
+ 'outside_ratio': 0.28,
94
+ 'inside_ratio': 0.45,
95
+ 'w_overlap': 0.0,
96
+ 'w_degree': 1.95,
97
+ 'w_length': 0.0,
98
+ 'w_area': 1.86,
99
+ 'w_center': 0.14}):
100
+ '''
101
+ shape = [height, width]
102
+ '''
103
+ h, w, _ = image.shape
104
+ original_shape = [h, w]
105
+
106
+ resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA),
107
+ np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
108
+ resized_image = resized_image.transpose((2, 0, 1))
109
+ batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
110
+ batch_image = (batch_image / 127.5) - 1.0
111
+
112
+ batch_image = torch.from_numpy(batch_image).float().cuda()
113
+ outputs = model(batch_image)
114
+
115
+ pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
116
+ start = vmap[:, :, :2] # (x, y)
117
+ end = vmap[:, :, 2:] # (x, y)
118
+ dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
119
+
120
+ junc_list = []
121
+ segments_list = []
122
+ for junc, score in zip(pts, pts_score):
123
+ y, x = junc
124
+ distance = dist_map[y, x]
125
+ if score > params['score'] and distance > 20.0:
126
+ junc_list.append([x, y])
127
+ disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
128
+ d_arrow = 1.0
129
+ x_start = x + d_arrow * disp_x_start
130
+ y_start = y + d_arrow * disp_y_start
131
+ x_end = x + d_arrow * disp_x_end
132
+ y_end = y + d_arrow * disp_y_end
133
+ segments_list.append([x_start, y_start, x_end, y_end])
134
+
135
+ segments = np.array(segments_list)
136
+
137
+ ####### post processing for squares
138
+ # 1. get unique lines
139
+ point = np.array([[0, 0]])
140
+ point = point[0]
141
+ start = segments[:, :2]
142
+ end = segments[:, 2:]
143
+ diff = start - end
144
+ a = diff[:, 1]
145
+ b = -diff[:, 0]
146
+ c = a * start[:, 0] + b * start[:, 1]
147
+
148
+ d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
149
+ theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi
150
+ theta[theta < 0.0] += 180
151
+ hough = np.concatenate([d[:, None], theta[:, None]], axis=-1)
152
+
153
+ d_quant = 1
154
+ theta_quant = 2
155
+ hough[:, 0] //= d_quant
156
+ hough[:, 1] //= theta_quant
157
+ _, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)
158
+
159
+ acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
160
+ idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
161
+ yx_indices = hough[indices, :].astype('int32')
162
+ acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts
163
+ idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices
164
+
165
+ acc_map_np = acc_map
166
+ # acc_map = acc_map[None, :, :, None]
167
+ #
168
+ # ### fast suppression using tensorflow op
169
+ # acc_map = tf.constant(acc_map, dtype=tf.float32)
170
+ # max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map)
171
+ # acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32)
172
+ # flatten_acc_map = tf.reshape(acc_map, [1, -1])
173
+ # topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts))
174
+ # _, h, w, _ = acc_map.shape
175
+ # y = tf.expand_dims(topk_indices // w, axis=-1)
176
+ # x = tf.expand_dims(topk_indices % w, axis=-1)
177
+ # yx = tf.concat([y, x], axis=-1)
178
+
179
+ ### fast suppression using pytorch op
180
+ acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0)
181
+ _,_, h, w = acc_map.shape
182
+ max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2)
183
+ acc_map = acc_map * ( (acc_map == max_acc_map).float() )
184
+ flatten_acc_map = acc_map.reshape([-1, ])
185
+
186
+ scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True)
187
+ yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1)
188
+ xx = torch.fmod(indices, w).unsqueeze(-1)
189
+ yx = torch.cat((yy, xx), dim=-1)
190
+
191
+ yx = yx.detach().cpu().numpy()
192
+
193
+ topk_values = scores.detach().cpu().numpy()
194
+ indices = idx_map[yx[:, 0], yx[:, 1]]
195
+ basis = 5 // 2
196
+
197
+ merged_segments = []
198
+ for yx_pt, max_indice, value in zip(yx, indices, topk_values):
199
+ y, x = yx_pt
200
+ if max_indice == -1 or value == 0:
201
+ continue
202
+ segment_list = []
203
+ for y_offset in range(-basis, basis + 1):
204
+ for x_offset in range(-basis, basis + 1):
205
+ indice = idx_map[y + y_offset, x + x_offset]
206
+ cnt = int(acc_map_np[y + y_offset, x + x_offset])
207
+ if indice != -1:
208
+ segment_list.append(segments[indice])
209
+ if cnt > 1:
210
+ check_cnt = 1
211
+ current_hough = hough[indice]
212
+ for new_indice, new_hough in enumerate(hough):
213
+ if (current_hough == new_hough).all() and indice != new_indice:
214
+ segment_list.append(segments[new_indice])
215
+ check_cnt += 1
216
+ if check_cnt == cnt:
217
+ break
218
+ group_segments = np.array(segment_list).reshape([-1, 2])
219
+ sorted_group_segments = np.sort(group_segments, axis=0)
220
+ x_min, y_min = sorted_group_segments[0, :]
221
+ x_max, y_max = sorted_group_segments[-1, :]
222
+
223
+ deg = theta[max_indice]
224
+ if deg >= 90:
225
+ merged_segments.append([x_min, y_max, x_max, y_min])
226
+ else:
227
+ merged_segments.append([x_min, y_min, x_max, y_max])
228
+
229
+ # 2. get intersections
230
+ new_segments = np.array(merged_segments) # (x1, y1, x2, y2)
231
+ start = new_segments[:, :2] # (x1, y1)
232
+ end = new_segments[:, 2:] # (x2, y2)
233
+ new_centers = (start + end) / 2.0
234
+ diff = start - end
235
+ dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))
236
+
237
+ # ax + by = c
238
+ a = diff[:, 1]
239
+ b = -diff[:, 0]
240
+ c = a * start[:, 0] + b * start[:, 1]
241
+ pre_det = a[:, None] * b[None, :]
242
+ det = pre_det - np.transpose(pre_det)
243
+
244
+ pre_inter_y = a[:, None] * c[None, :]
245
+ inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
246
+ pre_inter_x = c[:, None] * b[None, :]
247
+ inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
248
+ inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32')
249
+
250
+ # 3. get corner information
251
+ # 3.1 get distance
252
+ '''
253
+ dist_segments:
254
+ | dist(0), dist(1), dist(2), ...|
255
+ dist_inter_to_segment1:
256
+ | dist(inter,0), dist(inter,0), dist(inter,0), ... |
257
+ | dist(inter,1), dist(inter,1), dist(inter,1), ... |
258
+ ...
259
+ dist_inter_to_semgnet2:
260
+ | dist(inter,0), dist(inter,1), dist(inter,2), ... |
261
+ | dist(inter,0), dist(inter,1), dist(inter,2), ... |
262
+ ...
263
+ '''
264
+
265
+ dist_inter_to_segment1_start = np.sqrt(
266
+ np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
267
+ dist_inter_to_segment1_end = np.sqrt(
268
+ np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
269
+ dist_inter_to_segment2_start = np.sqrt(
270
+ np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
271
+ dist_inter_to_segment2_end = np.sqrt(
272
+ np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
273
+
274
+ # sort ascending
275
+ dist_inter_to_segment1 = np.sort(
276
+ np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1),
277
+ axis=-1) # [n_batch, n_batch, 2]
278
+ dist_inter_to_segment2 = np.sort(
279
+ np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1),
280
+ axis=-1) # [n_batch, n_batch, 2]
281
+
282
+ # 3.2 get degree
283
+ inter_to_start = new_centers[:, None, :] - inter_pts
284
+ deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi
285
+ deg_inter_to_start[deg_inter_to_start < 0.0] += 360
286
+ inter_to_end = new_centers[None, :, :] - inter_pts
287
+ deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi
288
+ deg_inter_to_end[deg_inter_to_end < 0.0] += 360
289
+
290
+ '''
291
+ B -- G
292
+ | |
293
+ C -- R
294
+ B : blue / G: green / C: cyan / R: red
295
+
296
+ 0 -- 1
297
+ | |
298
+ 3 -- 2
299
+ '''
300
+ # rename variables
301
+ deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
302
+ # sort deg ascending
303
+ deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1)
304
+
305
+ deg_diff_map = np.abs(deg1_map - deg2_map)
306
+ # we only consider the smallest degree of intersect
307
+ deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]
308
+
309
+ # define available degree range
310
+ deg_range = [60, 120]
311
+
312
+ corner_dict = {corner_info: [] for corner_info in range(4)}
313
+ inter_points = []
314
+ for i in range(inter_pts.shape[0]):
315
+ for j in range(i + 1, inter_pts.shape[1]):
316
+ # i, j > line index, always i < j
317
+ x, y = inter_pts[i, j, :]
318
+ deg1, deg2 = deg_sort[i, j, :]
319
+ deg_diff = deg_diff_map[i, j]
320
+
321
+ check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]
322
+
323
+ outside_ratio = params['outside_ratio'] # over ratio >>> drop it!
324
+ inside_ratio = params['inside_ratio'] # over ratio >>> drop it!
325
+ check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \
326
+ dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \
327
+ (dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \
328
+ dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \
329
+ ((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \
330
+ dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \
331
+ (dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \
332
+ dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio))
333
+
334
+ if check_degree and check_distance:
335
+ corner_info = None
336
+
337
+ if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \
338
+ (deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
339
+ corner_info, color_info = 0, 'blue'
340
+ elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
341
+ corner_info, color_info = 1, 'green'
342
+ elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
343
+ corner_info, color_info = 2, 'black'
344
+ elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
345
+ (deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
346
+ corner_info, color_info = 3, 'cyan'
347
+ else:
348
+ corner_info, color_info = 4, 'red' # we don't use it
349
+ continue
350
+
351
+ corner_dict[corner_info].append([x, y, i, j])
352
+ inter_points.append([x, y])
353
+
354
+ square_list = []
355
+ connect_list = []
356
+ segments_list = []
357
+ for corner0 in corner_dict[0]:
358
+ for corner1 in corner_dict[1]:
359
+ connect01 = False
360
+ for corner0_line in corner0[2:]:
361
+ if corner0_line in corner1[2:]:
362
+ connect01 = True
363
+ break
364
+ if connect01:
365
+ for corner2 in corner_dict[2]:
366
+ connect12 = False
367
+ for corner1_line in corner1[2:]:
368
+ if corner1_line in corner2[2:]:
369
+ connect12 = True
370
+ break
371
+ if connect12:
372
+ for corner3 in corner_dict[3]:
373
+ connect23 = False
374
+ for corner2_line in corner2[2:]:
375
+ if corner2_line in corner3[2:]:
376
+ connect23 = True
377
+ break
378
+ if connect23:
379
+ for corner3_line in corner3[2:]:
380
+ if corner3_line in corner0[2:]:
381
+ # SQUARE!!!
382
+ '''
383
+ 0 -- 1
384
+ | |
385
+ 3 -- 2
386
+ square_list:
387
+ order: 0 > 1 > 2 > 3
388
+ | x0, y0, x1, y1, x2, y2, x3, y3 |
389
+ | x0, y0, x1, y1, x2, y2, x3, y3 |
390
+ ...
391
+ connect_list:
392
+ order: 01 > 12 > 23 > 30
393
+ | line_idx01, line_idx12, line_idx23, line_idx30 |
394
+ | line_idx01, line_idx12, line_idx23, line_idx30 |
395
+ ...
396
+ segments_list:
397
+ order: 0 > 1 > 2 > 3
398
+ | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
399
+ | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
400
+ ...
401
+ '''
402
+ square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
403
+ connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
404
+ segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])
405
+
406
+ def check_outside_inside(segments_info, connect_idx):
407
+ # return 'outside or inside', min distance, cover_param, peri_param
408
+ if connect_idx == segments_info[0]:
409
+ check_dist_mat = dist_inter_to_segment1
410
+ else:
411
+ check_dist_mat = dist_inter_to_segment2
412
+
413
+ i, j = segments_info
414
+ min_dist, max_dist = check_dist_mat[i, j, :]
415
+ connect_dist = dist_segments[connect_idx]
416
+ if max_dist > connect_dist:
417
+ return 'outside', min_dist, 0, 1
418
+ else:
419
+ return 'inside', min_dist, -1, -1
420
+
421
+ top_square = None
422
+
423
+ try:
424
+ map_size = input_shape[0] / 2
425
+ squares = np.array(square_list).reshape([-1, 4, 2])
426
+ score_array = []
427
+ connect_array = np.array(connect_list)
428
+ segments_array = np.array(segments_list).reshape([-1, 4, 2])
429
+
430
+ # get degree of corners:
431
+ squares_rollup = np.roll(squares, 1, axis=1)
432
+ squares_rolldown = np.roll(squares, -1, axis=1)
433
+ vec1 = squares_rollup - squares
434
+ normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
435
+ vec2 = squares_rolldown - squares
436
+ normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
437
+ inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4]
438
+ squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4]
439
+
440
+ # get square score
441
+ overlap_scores = []
442
+ degree_scores = []
443
+ length_scores = []
444
+
445
+ for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
446
+ '''
447
+ 0 -- 1
448
+ | |
449
+ 3 -- 2
450
+
451
+ # segments: [4, 2]
452
+ # connects: [4]
453
+ '''
454
+
455
+ ###################################### OVERLAP SCORES
456
+ cover = 0
457
+ perimeter = 0
458
+ # check 0 > 1 > 2 > 3
459
+ square_length = []
460
+
461
+ for start_idx in range(4):
462
+ end_idx = (start_idx + 1) % 4
463
+
464
+ connect_idx = connects[start_idx] # segment idx of segment01
465
+ start_segments = segments[start_idx]
466
+ end_segments = segments[end_idx]
467
+
468
+ start_point = square[start_idx]
469
+ end_point = square[end_idx]
470
+
471
+ # check whether outside or inside
472
+ start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments,
473
+ connect_idx)
474
+ end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)
475
+
476
+ cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
477
+ perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min
478
+
479
+ square_length.append(
480
+ dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)
481
+
482
+ overlap_scores.append(cover / perimeter)
483
+ ######################################
484
+ ###################################### DEGREE SCORES
485
+ '''
486
+ deg0 vs deg2
487
+ deg1 vs deg3
488
+ '''
489
+ deg0, deg1, deg2, deg3 = degree
490
+ deg_ratio1 = deg0 / deg2
491
+ if deg_ratio1 > 1.0:
492
+ deg_ratio1 = 1 / deg_ratio1
493
+ deg_ratio2 = deg1 / deg3
494
+ if deg_ratio2 > 1.0:
495
+ deg_ratio2 = 1 / deg_ratio2
496
+ degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
497
+ ######################################
498
+ ###################################### LENGTH SCORES
499
+ '''
500
+ len0 vs len2
501
+ len1 vs len3
502
+ '''
503
+ len0, len1, len2, len3 = square_length
504
+ len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
505
+ len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
506
+ length_scores.append((len_ratio1 + len_ratio2) / 2)
507
+
508
+ ######################################
509
+
510
+ overlap_scores = np.array(overlap_scores)
511
+ overlap_scores /= np.max(overlap_scores)
512
+
513
+ degree_scores = np.array(degree_scores)
514
+ # degree_scores /= np.max(degree_scores)
515
+
516
+ length_scores = np.array(length_scores)
517
+
518
+ ###################################### AREA SCORES
519
+ area_scores = np.reshape(squares, [-1, 4, 2])
520
+ area_x = area_scores[:, :, 0]
521
+ area_y = area_scores[:, :, 1]
522
+ correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0]
523
+ area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1)
524
+ area_scores = 0.5 * np.abs(area_scores + correction)
525
+ area_scores /= (map_size * map_size) # np.max(area_scores)
526
+ ######################################
527
+
528
+ ###################################### CENTER SCORES
529
+ centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2]
530
+ # squares: [n, 4, 2]
531
+ square_centers = np.mean(squares, axis=1) # [n, 2]
532
+ center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
533
+ center_scores = center2center / (map_size / np.sqrt(2.0))
534
+
535
+ '''
536
+ score_w = [overlap, degree, area, center, length]
537
+ '''
538
+ score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
539
+ score_array = params['w_overlap'] * overlap_scores \
540
+ + params['w_degree'] * degree_scores \
541
+ + params['w_area'] * area_scores \
542
+ - params['w_center'] * center_scores \
543
+ + params['w_length'] * length_scores
544
+
545
+ best_square = []
546
+
547
+ sorted_idx = np.argsort(score_array)[::-1]
548
+ score_array = score_array[sorted_idx]
549
+ squares = squares[sorted_idx]
550
+
551
+ except Exception as e:
552
+ pass
553
+
554
+ '''return list
555
+ merged_lines, squares, scores
556
+ '''
557
+
558
+ try:
559
+ new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1]
560
+ new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0]
561
+ new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1]
562
+ new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0]
563
+ except:
564
+ new_segments = []
565
+
566
+ try:
567
+ squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1]
568
+ squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0]
569
+ except:
570
+ squares = []
571
+ score_array = []
572
+
573
+ try:
574
+ inter_points = np.array(inter_points)
575
+ inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1]
576
+ inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0]
577
+ except:
578
+ inter_points = []
579
+
580
+ return new_segments, squares, score_array, inter_points
annotator/normalbae/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2022 Caroline Chan
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
annotator/normalbae/__init__.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation
2
+ # https://github.com/baegwangbin/surface_normal_uncertainty
3
+
4
+ import os
5
+ import types
6
+ import torch
7
+ import numpy as np
8
+
9
+ from einops import rearrange
10
+ from .models.NNET import NNET
11
+ from .utils import utils
12
+ from annotator.util import annotator_ckpts_path
13
+ import torchvision.transforms as transforms
14
+
15
+
16
+ class NormalBaeDetector:
17
+ def __init__(self):
18
+ remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/scannet.pt"
19
+ modelpath = os.path.join(annotator_ckpts_path, "scannet.pt")
20
+ if not os.path.exists(modelpath):
21
+ from basicsr.utils.download_util import load_file_from_url
22
+ load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
23
+ args = types.SimpleNamespace()
24
+ args.mode = 'client'
25
+ args.architecture = 'BN'
26
+ args.pretrained = 'scannet'
27
+ args.sampling_ratio = 0.4
28
+ args.importance_ratio = 0.7
29
+ model = NNET(args)
30
+ model = utils.load_checkpoint(modelpath, model)
31
+ model = model.cuda()
32
+ model.eval()
33
+ self.model = model
34
+ self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
35
+
36
+ def __call__(self, input_image):
37
+ assert input_image.ndim == 3
38
+ image_normal = input_image
39
+ with torch.no_grad():
40
+ image_normal = torch.from_numpy(image_normal).float().cuda()
41
+ image_normal = image_normal / 255.0
42
+ image_normal = rearrange(image_normal, 'h w c -> 1 c h w')
43
+ image_normal = self.norm(image_normal)
44
+
45
+ normal = self.model(image_normal)
46
+ normal = normal[0][-1][:, :3]
47
+ # d = torch.sum(normal ** 2.0, dim=1, keepdim=True) ** 0.5
48
+ # d = torch.maximum(d, torch.ones_like(d) * 1e-5)
49
+ # normal /= d
50
+ normal = ((normal + 1) * 0.5).clip(0, 1)
51
+
52
+ normal = rearrange(normal[0], 'c h w -> h w c').cpu().numpy()
53
+ normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8)
54
+
55
+ return normal_image
annotator/normalbae/models/NNET.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .submodules.encoder import Encoder
6
+ from .submodules.decoder import Decoder
7
+
8
+
9
+ class NNET(nn.Module):
10
+ def __init__(self, args):
11
+ super(NNET, self).__init__()
12
+ self.encoder = Encoder()
13
+ self.decoder = Decoder(args)
14
+
15
+ def get_1x_lr_params(self): # lr/10 learning rate
16
+ return self.encoder.parameters()
17
+
18
+ def get_10x_lr_params(self): # lr learning rate
19
+ return self.decoder.parameters()
20
+
21
+ def forward(self, img, **kwargs):
22
+ return self.decoder(self.encoder(img), **kwargs)
annotator/normalbae/models/baseline.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .submodules.submodules import UpSampleBN, norm_normalize
6
+
7
+
8
+ # This is the baseline encoder-decoder we used in the ablation study
9
+ class NNET(nn.Module):
10
+ def __init__(self, args=None):
11
+ super(NNET, self).__init__()
12
+ self.encoder = Encoder()
13
+ self.decoder = Decoder(num_classes=4)
14
+
15
+ def forward(self, x, **kwargs):
16
+ out = self.decoder(self.encoder(x), **kwargs)
17
+
18
+ # Bilinearly upsample the output to match the input resolution
19
+ up_out = F.interpolate(out, size=[x.size(2), x.size(3)], mode='bilinear', align_corners=False)
20
+
21
+ # L2-normalize the first three channels / ensure positive value for concentration parameters (kappa)
22
+ up_out = norm_normalize(up_out)
23
+ return up_out
24
+
25
+ def get_1x_lr_params(self): # lr/10 learning rate
26
+ return self.encoder.parameters()
27
+
28
+ def get_10x_lr_params(self): # lr learning rate
29
+ modules = [self.decoder]
30
+ for m in modules:
31
+ yield from m.parameters()
32
+
33
+
34
+ # Encoder
35
+ class Encoder(nn.Module):
36
+ def __init__(self):
37
+ super(Encoder, self).__init__()
38
+
39
+ basemodel_name = 'tf_efficientnet_b5_ap'
40
+ basemodel = torch.hub.load('rwightman/gen-efficientnet-pytorch', basemodel_name, pretrained=True)
41
+
42
+ # Remove last layer
43
+ basemodel.global_pool = nn.Identity()
44
+ basemodel.classifier = nn.Identity()
45
+
46
+ self.original_model = basemodel
47
+
48
+ def forward(self, x):
49
+ features = [x]
50
+ for k, v in self.original_model._modules.items():
51
+ if (k == 'blocks'):
52
+ for ki, vi in v._modules.items():
53
+ features.append(vi(features[-1]))
54
+ else:
55
+ features.append(v(features[-1]))
56
+ return features
57
+
58
+
59
+ # Decoder (no pixel-wise MLP, no uncertainty-guided sampling)
60
+ class Decoder(nn.Module):
61
+ def __init__(self, num_classes=4):
62
+ super(Decoder, self).__init__()
63
+ self.conv2 = nn.Conv2d(2048, 2048, kernel_size=1, stride=1, padding=0)
64
+ self.up1 = UpSampleBN(skip_input=2048 + 176, output_features=1024)
65
+ self.up2 = UpSampleBN(skip_input=1024 + 64, output_features=512)
66
+ self.up3 = UpSampleBN(skip_input=512 + 40, output_features=256)
67
+ self.up4 = UpSampleBN(skip_input=256 + 24, output_features=128)
68
+ self.conv3 = nn.Conv2d(128, num_classes, kernel_size=3, stride=1, padding=1)
69
+
70
+ def forward(self, features):
71
+ x_block0, x_block1, x_block2, x_block3, x_block4 = features[4], features[5], features[6], features[8], features[11]
72
+ x_d0 = self.conv2(x_block4)
73
+ x_d1 = self.up1(x_d0, x_block3)
74
+ x_d2 = self.up2(x_d1, x_block2)
75
+ x_d3 = self.up3(x_d2, x_block1)
76
+ x_d4 = self.up4(x_d3, x_block0)
77
+ out = self.conv3(x_d4)
78
+ return out
79
+
80
+
81
+ if __name__ == '__main__':
82
+ model = Baseline()
83
+ x = torch.rand(2, 3, 480, 640)
84
+ out = model(x)
85
+ print(out.shape)
annotator/normalbae/models/submodules/decoder.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from .submodules import UpSampleBN, UpSampleGN, norm_normalize, sample_points
5
+
6
+
7
+ class Decoder(nn.Module):
8
+ def __init__(self, args):
9
+ super(Decoder, self).__init__()
10
+
11
+ # hyper-parameter for sampling
12
+ self.sampling_ratio = args.sampling_ratio
13
+ self.importance_ratio = args.importance_ratio
14
+
15
+ # feature-map
16
+ self.conv2 = nn.Conv2d(2048, 2048, kernel_size=1, stride=1, padding=0)
17
+ if args.architecture == 'BN':
18
+ self.up1 = UpSampleBN(skip_input=2048 + 176, output_features=1024)
19
+ self.up2 = UpSampleBN(skip_input=1024 + 64, output_features=512)
20
+ self.up3 = UpSampleBN(skip_input=512 + 40, output_features=256)
21
+ self.up4 = UpSampleBN(skip_input=256 + 24, output_features=128)
22
+
23
+ elif args.architecture == 'GN':
24
+ self.up1 = UpSampleGN(skip_input=2048 + 176, output_features=1024)
25
+ self.up2 = UpSampleGN(skip_input=1024 + 64, output_features=512)
26
+ self.up3 = UpSampleGN(skip_input=512 + 40, output_features=256)
27
+ self.up4 = UpSampleGN(skip_input=256 + 24, output_features=128)
28
+
29
+ else:
30
+ raise Exception('invalid architecture')
31
+
32
+ # produces 1/8 res output
33
+ self.out_conv_res8 = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
34
+
35
+ # produces 1/4 res output
36
+ self.out_conv_res4 = nn.Sequential(
37
+ nn.Conv1d(512 + 4, 128, kernel_size=1), nn.ReLU(),
38
+ nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
39
+ nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
40
+ nn.Conv1d(128, 4, kernel_size=1),
41
+ )
42
+
43
+ # produces 1/2 res output
44
+ self.out_conv_res2 = nn.Sequential(
45
+ nn.Conv1d(256 + 4, 128, kernel_size=1), nn.ReLU(),
46
+ nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
47
+ nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
48
+ nn.Conv1d(128, 4, kernel_size=1),
49
+ )
50
+
51
+ # produces 1/1 res output
52
+ self.out_conv_res1 = nn.Sequential(
53
+ nn.Conv1d(128 + 4, 128, kernel_size=1), nn.ReLU(),
54
+ nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
55
+ nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
56
+ nn.Conv1d(128, 4, kernel_size=1),
57
+ )
58
+
59
+ def forward(self, features, gt_norm_mask=None, mode='test'):
60
+ x_block0, x_block1, x_block2, x_block3, x_block4 = features[4], features[5], features[6], features[8], features[11]
61
+
62
+ # generate feature-map
63
+
64
+ x_d0 = self.conv2(x_block4) # x_d0 : [2, 2048, 15, 20] 1/32 res
65
+ x_d1 = self.up1(x_d0, x_block3) # x_d1 : [2, 1024, 30, 40] 1/16 res
66
+ x_d2 = self.up2(x_d1, x_block2) # x_d2 : [2, 512, 60, 80] 1/8 res
67
+ x_d3 = self.up3(x_d2, x_block1) # x_d3: [2, 256, 120, 160] 1/4 res
68
+ x_d4 = self.up4(x_d3, x_block0) # x_d4: [2, 128, 240, 320] 1/2 res
69
+
70
+ # 1/8 res output
71
+ out_res8 = self.out_conv_res8(x_d2) # out_res8: [2, 4, 60, 80] 1/8 res output
72
+ out_res8 = norm_normalize(out_res8) # out_res8: [2, 4, 60, 80] 1/8 res output
73
+
74
+ ################################################################################################################
75
+ # out_res4
76
+ ################################################################################################################
77
+
78
+ if mode == 'train':
79
+ # upsampling ... out_res8: [2, 4, 60, 80] -> out_res8_res4: [2, 4, 120, 160]
80
+ out_res8_res4 = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
81
+ B, _, H, W = out_res8_res4.shape
82
+
83
+ # samples: [B, 1, N, 2]
84
+ point_coords_res4, rows_int, cols_int = sample_points(out_res8_res4.detach(), gt_norm_mask,
85
+ sampling_ratio=self.sampling_ratio,
86
+ beta=self.importance_ratio)
87
+
88
+ # output (needed for evaluation / visualization)
89
+ out_res4 = out_res8_res4
90
+
91
+ # grid_sample feature-map
92
+ feat_res4 = F.grid_sample(x_d2, point_coords_res4, mode='bilinear', align_corners=True) # (B, 512, 1, N)
93
+ init_pred = F.grid_sample(out_res8, point_coords_res4, mode='bilinear', align_corners=True) # (B, 4, 1, N)
94
+ feat_res4 = torch.cat([feat_res4, init_pred], dim=1) # (B, 512+4, 1, N)
95
+
96
+ # prediction (needed to compute loss)
97
+ samples_pred_res4 = self.out_conv_res4(feat_res4[:, :, 0, :]) # (B, 4, N)
98
+ samples_pred_res4 = norm_normalize(samples_pred_res4) # (B, 4, N) - normalized
99
+
100
+ for i in range(B):
101
+ out_res4[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res4[i, :, :]
102
+
103
+ else:
104
+ # grid_sample feature-map
105
+ feat_map = F.interpolate(x_d2, scale_factor=2, mode='bilinear', align_corners=True)
106
+ init_pred = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
107
+ feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
108
+ B, _, H, W = feat_map.shape
109
+
110
+ # try all pixels
111
+ out_res4 = self.out_conv_res4(feat_map.view(B, 512 + 4, -1)) # (B, 4, N)
112
+ out_res4 = norm_normalize(out_res4) # (B, 4, N) - normalized
113
+ out_res4 = out_res4.view(B, 4, H, W)
114
+ samples_pred_res4 = point_coords_res4 = None
115
+
116
+ ################################################################################################################
117
+ # out_res2
118
+ ################################################################################################################
119
+
120
+ if mode == 'train':
121
+
122
+ # upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
123
+ out_res4_res2 = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
124
+ B, _, H, W = out_res4_res2.shape
125
+
126
+ # samples: [B, 1, N, 2]
127
+ point_coords_res2, rows_int, cols_int = sample_points(out_res4_res2.detach(), gt_norm_mask,
128
+ sampling_ratio=self.sampling_ratio,
129
+ beta=self.importance_ratio)
130
+
131
+ # output (needed for evaluation / visualization)
132
+ out_res2 = out_res4_res2
133
+
134
+ # grid_sample feature-map
135
+ feat_res2 = F.grid_sample(x_d3, point_coords_res2, mode='bilinear', align_corners=True) # (B, 256, 1, N)
136
+ init_pred = F.grid_sample(out_res4, point_coords_res2, mode='bilinear', align_corners=True) # (B, 4, 1, N)
137
+ feat_res2 = torch.cat([feat_res2, init_pred], dim=1) # (B, 256+4, 1, N)
138
+
139
+ # prediction (needed to compute loss)
140
+ samples_pred_res2 = self.out_conv_res2(feat_res2[:, :, 0, :]) # (B, 4, N)
141
+ samples_pred_res2 = norm_normalize(samples_pred_res2) # (B, 4, N) - normalized
142
+
143
+ for i in range(B):
144
+ out_res2[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res2[i, :, :]
145
+
146
+ else:
147
+ # grid_sample feature-map
148
+ feat_map = F.interpolate(x_d3, scale_factor=2, mode='bilinear', align_corners=True)
149
+ init_pred = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
150
+ feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
151
+ B, _, H, W = feat_map.shape
152
+
153
+ out_res2 = self.out_conv_res2(feat_map.view(B, 256 + 4, -1)) # (B, 4, N)
154
+ out_res2 = norm_normalize(out_res2) # (B, 4, N) - normalized
155
+ out_res2 = out_res2.view(B, 4, H, W)
156
+ samples_pred_res2 = point_coords_res2 = None
157
+
158
+ ################################################################################################################
159
+ # out_res1
160
+ ################################################################################################################
161
+
162
+ if mode == 'train':
163
+ # upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
164
+ out_res2_res1 = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
165
+ B, _, H, W = out_res2_res1.shape
166
+
167
+ # samples: [B, 1, N, 2]
168
+ point_coords_res1, rows_int, cols_int = sample_points(out_res2_res1.detach(), gt_norm_mask,
169
+ sampling_ratio=self.sampling_ratio,
170
+ beta=self.importance_ratio)
171
+
172
+ # output (needed for evaluation / visualization)
173
+ out_res1 = out_res2_res1
174
+
175
+ # grid_sample feature-map
176
+ feat_res1 = F.grid_sample(x_d4, point_coords_res1, mode='bilinear', align_corners=True) # (B, 128, 1, N)
177
+ init_pred = F.grid_sample(out_res2, point_coords_res1, mode='bilinear', align_corners=True) # (B, 4, 1, N)
178
+ feat_res1 = torch.cat([feat_res1, init_pred], dim=1) # (B, 128+4, 1, N)
179
+
180
+ # prediction (needed to compute loss)
181
+ samples_pred_res1 = self.out_conv_res1(feat_res1[:, :, 0, :]) # (B, 4, N)
182
+ samples_pred_res1 = norm_normalize(samples_pred_res1) # (B, 4, N) - normalized
183
+
184
+ for i in range(B):
185
+ out_res1[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res1[i, :, :]
186
+
187
+ else:
188
+ # grid_sample feature-map
189
+ feat_map = F.interpolate(x_d4, scale_factor=2, mode='bilinear', align_corners=True)
190
+ init_pred = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
191
+ feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
192
+ B, _, H, W = feat_map.shape
193
+
194
+ out_res1 = self.out_conv_res1(feat_map.view(B, 128 + 4, -1)) # (B, 4, N)
195
+ out_res1 = norm_normalize(out_res1) # (B, 4, N) - normalized
196
+ out_res1 = out_res1.view(B, 4, H, W)
197
+ samples_pred_res1 = point_coords_res1 = None
198
+
199
+ return [out_res8, out_res4, out_res2, out_res1], \
200
+ [out_res8, samples_pred_res4, samples_pred_res2, samples_pred_res1], \
201
+ [None, point_coords_res4, point_coords_res2, point_coords_res1]
202
+
annotator/normalbae/models/submodules/efficientnet_repo/BENCHMARK.md ADDED
@@ -0,0 +1,555 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Performance Benchmarks
2
+
3
+ All benchmarks run as per:
4
+
5
+ ```
6
+ python onnx_export.py --model mobilenetv3_100 ./mobilenetv3_100.onnx
7
+ python onnx_optimize.py ./mobilenetv3_100.onnx --output mobilenetv3_100-opt.onnx
8
+ python onnx_to_caffe.py ./mobilenetv3_100.onnx --c2-prefix mobilenetv3
9
+ python onnx_to_caffe.py ./mobilenetv3_100-opt.onnx --c2-prefix mobilenetv3-opt
10
+ python caffe2_benchmark.py --c2-init ./mobilenetv3.init.pb --c2-predict ./mobilenetv3.predict.pb
11
+ python caffe2_benchmark.py --c2-init ./mobilenetv3-opt.init.pb --c2-predict ./mobilenetv3-opt.predict.pb
12
+ ```
13
+
14
+ ## EfficientNet-B0
15
+
16
+ ### Unoptimized
17
+ ```
18
+ Main run finished. Milliseconds per iter: 49.2862. Iters per second: 20.2897
19
+ Time per operator type:
20
+ 29.7378 ms. 60.5145%. Conv
21
+ 12.1785 ms. 24.7824%. Sigmoid
22
+ 3.62811 ms. 7.38297%. SpatialBN
23
+ 2.98444 ms. 6.07314%. Mul
24
+ 0.326902 ms. 0.665225%. AveragePool
25
+ 0.197317 ms. 0.401528%. FC
26
+ 0.0852877 ms. 0.173555%. Add
27
+ 0.0032607 ms. 0.00663532%. Squeeze
28
+ 49.1416 ms in Total
29
+ FLOP per operator type:
30
+ 0.76907 GFLOP. 95.2696%. Conv
31
+ 0.0269508 GFLOP. 3.33857%. SpatialBN
32
+ 0.00846444 GFLOP. 1.04855%. Mul
33
+ 0.002561 GFLOP. 0.317248%. FC
34
+ 0.000210112 GFLOP. 0.0260279%. Add
35
+ 0.807256 GFLOP in Total
36
+ Feature Memory Read per operator type:
37
+ 58.5253 MB. 43.0891%. Mul
38
+ 43.2015 MB. 31.807%. Conv
39
+ 27.2869 MB. 20.0899%. SpatialBN
40
+ 5.12912 MB. 3.77631%. FC
41
+ 1.6809 MB. 1.23756%. Add
42
+ 135.824 MB in Total
43
+ Feature Memory Written per operator type:
44
+ 33.8578 MB. 38.1965%. Mul
45
+ 26.9881 MB. 30.4465%. Conv
46
+ 26.9508 MB. 30.4044%. SpatialBN
47
+ 0.840448 MB. 0.948147%. Add
48
+ 0.004 MB. 0.00451258%. FC
49
+ 88.6412 MB in Total
50
+ Parameter Memory per operator type:
51
+ 15.8248 MB. 74.9391%. Conv
52
+ 5.124 MB. 24.265%. FC
53
+ 0.168064 MB. 0.795877%. SpatialBN
54
+ 0 MB. 0%. Add
55
+ 0 MB. 0%. Mul
56
+ 21.1168 MB in Total
57
+ ```
58
+ ### Optimized
59
+ ```
60
+ Main run finished. Milliseconds per iter: 46.0838. Iters per second: 21.6996
61
+ Time per operator type:
62
+ 29.776 ms. 65.002%. Conv
63
+ 12.2803 ms. 26.8084%. Sigmoid
64
+ 3.15073 ms. 6.87815%. Mul
65
+ 0.328651 ms. 0.717456%. AveragePool
66
+ 0.186237 ms. 0.406563%. FC
67
+ 0.0832429 ms. 0.181722%. Add
68
+ 0.0026184 ms. 0.00571606%. Squeeze
69
+ 45.8078 ms in Total
70
+ FLOP per operator type:
71
+ 0.76907 GFLOP. 98.5601%. Conv
72
+ 0.00846444 GFLOP. 1.08476%. Mul
73
+ 0.002561 GFLOP. 0.328205%. FC
74
+ 0.000210112 GFLOP. 0.0269269%. Add
75
+ 0.780305 GFLOP in Total
76
+ Feature Memory Read per operator type:
77
+ 58.5253 MB. 53.8803%. Mul
78
+ 43.2855 MB. 39.8501%. Conv
79
+ 5.12912 MB. 4.72204%. FC
80
+ 1.6809 MB. 1.54749%. Add
81
+ 108.621 MB in Total
82
+ Feature Memory Written per operator type:
83
+ 33.8578 MB. 54.8834%. Mul
84
+ 26.9881 MB. 43.7477%. Conv
85
+ 0.840448 MB. 1.36237%. Add
86
+ 0.004 MB. 0.00648399%. FC
87
+ 61.6904 MB in Total
88
+ Parameter Memory per operator type:
89
+ 15.8248 MB. 75.5403%. Conv
90
+ 5.124 MB. 24.4597%. FC
91
+ 0 MB. 0%. Add
92
+ 0 MB. 0%. Mul
93
+ 20.9488 MB in Total
94
+ ```
95
+
96
+ ## EfficientNet-B1
97
+ ### Optimized
98
+ ```
99
+ Main run finished. Milliseconds per iter: 71.8102. Iters per second: 13.9256
100
+ Time per operator type:
101
+ 45.7915 ms. 66.3206%. Conv
102
+ 17.8718 ms. 25.8841%. Sigmoid
103
+ 4.44132 ms. 6.43244%. Mul
104
+ 0.51001 ms. 0.738658%. AveragePool
105
+ 0.233283 ms. 0.337868%. Add
106
+ 0.194986 ms. 0.282402%. FC
107
+ 0.00268255 ms. 0.00388519%. Squeeze
108
+ 69.0456 ms in Total
109
+ FLOP per operator type:
110
+ 1.37105 GFLOP. 98.7673%. Conv
111
+ 0.0138759 GFLOP. 0.99959%. Mul
112
+ 0.002561 GFLOP. 0.184489%. FC
113
+ 0.000674432 GFLOP. 0.0485847%. Add
114
+ 1.38816 GFLOP in Total
115
+ Feature Memory Read per operator type:
116
+ 94.624 MB. 54.0789%. Mul
117
+ 69.8255 MB. 39.9062%. Conv
118
+ 5.39546 MB. 3.08357%. Add
119
+ 5.12912 MB. 2.93136%. FC
120
+ 174.974 MB in Total
121
+ Feature Memory Written per operator type:
122
+ 55.5035 MB. 54.555%. Mul
123
+ 43.5333 MB. 42.7894%. Conv
124
+ 2.69773 MB. 2.65163%. Add
125
+ 0.004 MB. 0.00393165%. FC
126
+ 101.739 MB in Total
127
+ Parameter Memory per operator type:
128
+ 25.7479 MB. 83.4024%. Conv
129
+ 5.124 MB. 16.5976%. FC
130
+ 0 MB. 0%. Add
131
+ 0 MB. 0%. Mul
132
+ 30.8719 MB in Total
133
+ ```
134
+
135
+ ## EfficientNet-B2
136
+ ### Optimized
137
+ ```
138
+ Main run finished. Milliseconds per iter: 92.28. Iters per second: 10.8366
139
+ Time per operator type:
140
+ 61.4627 ms. 67.5845%. Conv
141
+ 22.7458 ms. 25.0113%. Sigmoid
142
+ 5.59931 ms. 6.15701%. Mul
143
+ 0.642567 ms. 0.706568%. AveragePool
144
+ 0.272795 ms. 0.299965%. Add
145
+ 0.216178 ms. 0.237709%. FC
146
+ 0.00268895 ms. 0.00295677%. Squeeze
147
+ 90.942 ms in Total
148
+ FLOP per operator type:
149
+ 1.98431 GFLOP. 98.9343%. Conv
150
+ 0.0177039 GFLOP. 0.882686%. Mul
151
+ 0.002817 GFLOP. 0.140451%. FC
152
+ 0.000853984 GFLOP. 0.0425782%. Add
153
+ 2.00568 GFLOP in Total
154
+ Feature Memory Read per operator type:
155
+ 120.609 MB. 54.9637%. Mul
156
+ 86.3512 MB. 39.3519%. Conv
157
+ 6.83187 MB. 3.11341%. Add
158
+ 5.64163 MB. 2.571%. FC
159
+ 219.433 MB in Total
160
+ Feature Memory Written per operator type:
161
+ 70.8155 MB. 54.6573%. Mul
162
+ 55.3273 MB. 42.7031%. Conv
163
+ 3.41594 MB. 2.63651%. Add
164
+ 0.004 MB. 0.00308731%. FC
165
+ 129.563 MB in Total
166
+ Parameter Memory per operator type:
167
+ 30.4721 MB. 84.3913%. Conv
168
+ 5.636 MB. 15.6087%. FC
169
+ 0 MB. 0%. Add
170
+ 0 MB. 0%. Mul
171
+ 36.1081 MB in Total
172
+ ```
173
+
174
+ ## MixNet-M
175
+ ### Optimized
176
+ ```
177
+ Main run finished. Milliseconds per iter: 63.1122. Iters per second: 15.8448
178
+ Time per operator type:
179
+ 48.1139 ms. 75.2052%. Conv
180
+ 7.1341 ms. 11.1511%. Sigmoid
181
+ 2.63706 ms. 4.12189%. SpatialBN
182
+ 1.73186 ms. 2.70701%. Mul
183
+ 1.38707 ms. 2.16809%. Split
184
+ 1.29322 ms. 2.02139%. Concat
185
+ 1.00093 ms. 1.56452%. Relu
186
+ 0.235309 ms. 0.367803%. Add
187
+ 0.221579 ms. 0.346343%. FC
188
+ 0.219315 ms. 0.342803%. AveragePool
189
+ 0.00250145 ms. 0.00390993%. Squeeze
190
+ 63.9768 ms in Total
191
+ FLOP per operator type:
192
+ 0.675273 GFLOP. 95.5827%. Conv
193
+ 0.0221072 GFLOP. 3.12921%. SpatialBN
194
+ 0.00538445 GFLOP. 0.762152%. Mul
195
+ 0.003073 GFLOP. 0.434973%. FC
196
+ 0.000642488 GFLOP. 0.0909421%. Add
197
+ 0 GFLOP. 0%. Concat
198
+ 0 GFLOP. 0%. Relu
199
+ 0.70648 GFLOP in Total
200
+ Feature Memory Read per operator type:
201
+ 46.8424 MB. 30.502%. Conv
202
+ 36.8626 MB. 24.0036%. Mul
203
+ 22.3152 MB. 14.5309%. SpatialBN
204
+ 22.1074 MB. 14.3955%. Concat
205
+ 14.1496 MB. 9.21372%. Relu
206
+ 6.15414 MB. 4.00735%. FC
207
+ 5.1399 MB. 3.34692%. Add
208
+ 153.571 MB in Total
209
+ Feature Memory Written per operator type:
210
+ 32.7672 MB. 28.4331%. Conv
211
+ 22.1072 MB. 19.1831%. Concat
212
+ 22.1072 MB. 19.1831%. SpatialBN
213
+ 21.5378 MB. 18.689%. Mul
214
+ 14.1496 MB. 12.2781%. Relu
215
+ 2.56995 MB. 2.23003%. Add
216
+ 0.004 MB. 0.00347092%. FC
217
+ 115.243 MB in Total
218
+ Parameter Memory per operator type:
219
+ 13.7059 MB. 68.674%. Conv
220
+ 6.148 MB. 30.8049%. FC
221
+ 0.104 MB. 0.521097%. SpatialBN
222
+ 0 MB. 0%. Add
223
+ 0 MB. 0%. Concat
224
+ 0 MB. 0%. Mul
225
+ 0 MB. 0%. Relu
226
+ 19.9579 MB in Total
227
+ ```
228
+
229
+ ## TF MobileNet-V3 Large 1.0
230
+
231
+ ### Optimized
232
+ ```
233
+ Main run finished. Milliseconds per iter: 22.0495. Iters per second: 45.3525
234
+ Time per operator type:
235
+ 17.437 ms. 80.0087%. Conv
236
+ 1.27662 ms. 5.8577%. Add
237
+ 1.12759 ms. 5.17387%. Div
238
+ 0.701155 ms. 3.21721%. Mul
239
+ 0.562654 ms. 2.58171%. Relu
240
+ 0.431144 ms. 1.97828%. Clip
241
+ 0.156902 ms. 0.719936%. FC
242
+ 0.0996858 ms. 0.457402%. AveragePool
243
+ 0.00112455 ms. 0.00515993%. Flatten
244
+ 21.7939 ms in Total
245
+ FLOP per operator type:
246
+ 0.43062 GFLOP. 98.1484%. Conv
247
+ 0.002561 GFLOP. 0.583713%. FC
248
+ 0.00210867 GFLOP. 0.480616%. Mul
249
+ 0.00193868 GFLOP. 0.441871%. Add
250
+ 0.00151532 GFLOP. 0.345377%. Div
251
+ 0 GFLOP. 0%. Relu
252
+ 0.438743 GFLOP in Total
253
+ Feature Memory Read per operator type:
254
+ 34.7967 MB. 43.9391%. Conv
255
+ 14.496 MB. 18.3046%. Mul
256
+ 9.44828 MB. 11.9307%. Add
257
+ 9.26157 MB. 11.6949%. Relu
258
+ 6.0614 MB. 7.65395%. Div
259
+ 5.12912 MB. 6.47673%. FC
260
+ 79.193 MB in Total
261
+ Feature Memory Written per operator type:
262
+ 17.6247 MB. 35.8656%. Conv
263
+ 9.26157 MB. 18.847%. Relu
264
+ 8.43469 MB. 17.1643%. Mul
265
+ 7.75472 MB. 15.7806%. Add
266
+ 6.06128 MB. 12.3345%. Div
267
+ 0.004 MB. 0.00813985%. FC
268
+ 49.1409 MB in Total
269
+ Parameter Memory per operator type:
270
+ 16.6851 MB. 76.5052%. Conv
271
+ 5.124 MB. 23.4948%. FC
272
+ 0 MB. 0%. Add
273
+ 0 MB. 0%. Div
274
+ 0 MB. 0%. Mul
275
+ 0 MB. 0%. Relu
276
+ 21.8091 MB in Total
277
+ ```
278
+
279
+ ## MobileNet-V3 (RW)
280
+
281
+ ### Unoptimized
282
+ ```
283
+ Main run finished. Milliseconds per iter: 24.8316. Iters per second: 40.2712
284
+ Time per operator type:
285
+ 15.9266 ms. 69.2624%. Conv
286
+ 2.36551 ms. 10.2873%. SpatialBN
287
+ 1.39102 ms. 6.04936%. Add
288
+ 1.30327 ms. 5.66773%. Div
289
+ 0.737014 ms. 3.20517%. Mul
290
+ 0.639697 ms. 2.78195%. Relu
291
+ 0.375681 ms. 1.63378%. Clip
292
+ 0.153126 ms. 0.665921%. FC
293
+ 0.0993787 ms. 0.432184%. AveragePool
294
+ 0.0032632 ms. 0.0141912%. Squeeze
295
+ 22.9946 ms in Total
296
+ FLOP per operator type:
297
+ 0.430616 GFLOP. 94.4041%. Conv
298
+ 0.0175992 GFLOP. 3.85829%. SpatialBN
299
+ 0.002561 GFLOP. 0.561449%. FC
300
+ 0.00210961 GFLOP. 0.46249%. Mul
301
+ 0.00173891 GFLOP. 0.381223%. Add
302
+ 0.00151626 GFLOP. 0.33241%. Div
303
+ 0 GFLOP. 0%. Relu
304
+ 0.456141 GFLOP in Total
305
+ Feature Memory Read per operator type:
306
+ 34.7354 MB. 36.4363%. Conv
307
+ 17.7944 MB. 18.6658%. SpatialBN
308
+ 14.5035 MB. 15.2137%. Mul
309
+ 9.25778 MB. 9.71113%. Relu
310
+ 7.84641 MB. 8.23064%. Add
311
+ 6.06516 MB. 6.36216%. Div
312
+ 5.12912 MB. 5.38029%. FC
313
+ 95.3317 MB in Total
314
+ Feature Memory Written per operator type:
315
+ 17.6246 MB. 26.7264%. Conv
316
+ 17.5992 MB. 26.6878%. SpatialBN
317
+ 9.25778 MB. 14.0387%. Relu
318
+ 8.43843 MB. 12.7962%. Mul
319
+ 6.95565 MB. 10.5477%. Add
320
+ 6.06502 MB. 9.19713%. Div
321
+ 0.004 MB. 0.00606568%. FC
322
+ 65.9447 MB in Total
323
+ Parameter Memory per operator type:
324
+ 16.6778 MB. 76.1564%. Conv
325
+ 5.124 MB. 23.3979%. FC
326
+ 0.0976 MB. 0.445674%. SpatialBN
327
+ 0 MB. 0%. Add
328
+ 0 MB. 0%. Div
329
+ 0 MB. 0%. Mul
330
+ 0 MB. 0%. Relu
331
+ 21.8994 MB in Total
332
+
333
+ ```
334
+ ### Optimized
335
+
336
+ ```
337
+ Main run finished. Milliseconds per iter: 22.0981. Iters per second: 45.2527
338
+ Time per operator type:
339
+ 17.146 ms. 78.8965%. Conv
340
+ 1.38453 ms. 6.37084%. Add
341
+ 1.30991 ms. 6.02749%. Div
342
+ 0.685417 ms. 3.15391%. Mul
343
+ 0.532589 ms. 2.45068%. Relu
344
+ 0.418263 ms. 1.92461%. Clip
345
+ 0.15128 ms. 0.696106%. FC
346
+ 0.102065 ms. 0.469648%. AveragePool
347
+ 0.0022143 ms. 0.010189%. Squeeze
348
+ 21.7323 ms in Total
349
+ FLOP per operator type:
350
+ 0.430616 GFLOP. 98.1927%. Conv
351
+ 0.002561 GFLOP. 0.583981%. FC
352
+ 0.00210961 GFLOP. 0.481051%. Mul
353
+ 0.00173891 GFLOP. 0.396522%. Add
354
+ 0.00151626 GFLOP. 0.34575%. Div
355
+ 0 GFLOP. 0%. Relu
356
+ 0.438542 GFLOP in Total
357
+ Feature Memory Read per operator type:
358
+ 34.7842 MB. 44.833%. Conv
359
+ 14.5035 MB. 18.6934%. Mul
360
+ 9.25778 MB. 11.9323%. Relu
361
+ 7.84641 MB. 10.1132%. Add
362
+ 6.06516 MB. 7.81733%. Div
363
+ 5.12912 MB. 6.61087%. FC
364
+ 77.5861 MB in Total
365
+ Feature Memory Written per operator type:
366
+ 17.6246 MB. 36.4556%. Conv
367
+ 9.25778 MB. 19.1492%. Relu
368
+ 8.43843 MB. 17.4544%. Mul
369
+ 6.95565 MB. 14.3874%. Add
370
+ 6.06502 MB. 12.5452%. Div
371
+ 0.004 MB. 0.00827378%. FC
372
+ 48.3455 MB in Total
373
+ Parameter Memory per operator type:
374
+ 16.6778 MB. 76.4973%. Conv
375
+ 5.124 MB. 23.5027%. FC
376
+ 0 MB. 0%. Add
377
+ 0 MB. 0%. Div
378
+ 0 MB. 0%. Mul
379
+ 0 MB. 0%. Relu
380
+ 21.8018 MB in Total
381
+
382
+ ```
383
+
384
+ ## MnasNet-A1
385
+
386
+ ### Unoptimized
387
+ ```
388
+ Main run finished. Milliseconds per iter: 30.0892. Iters per second: 33.2345
389
+ Time per operator type:
390
+ 24.4656 ms. 79.0905%. Conv
391
+ 4.14958 ms. 13.4144%. SpatialBN
392
+ 1.60598 ms. 5.19169%. Relu
393
+ 0.295219 ms. 0.95436%. Mul
394
+ 0.187609 ms. 0.606486%. FC
395
+ 0.120556 ms. 0.389724%. AveragePool
396
+ 0.09036 ms. 0.292109%. Add
397
+ 0.015727 ms. 0.050841%. Sigmoid
398
+ 0.00306205 ms. 0.00989875%. Squeeze
399
+ 30.9337 ms in Total
400
+ FLOP per operator type:
401
+ 0.620598 GFLOP. 95.6434%. Conv
402
+ 0.0248873 GFLOP. 3.8355%. SpatialBN
403
+ 0.002561 GFLOP. 0.394688%. FC
404
+ 0.000597408 GFLOP. 0.0920695%. Mul
405
+ 0.000222656 GFLOP. 0.0343146%. Add
406
+ 0 GFLOP. 0%. Relu
407
+ 0.648867 GFLOP in Total
408
+ Feature Memory Read per operator type:
409
+ 35.5457 MB. 38.4109%. Conv
410
+ 25.1552 MB. 27.1829%. SpatialBN
411
+ 22.5235 MB. 24.339%. Relu
412
+ 5.12912 MB. 5.54256%. FC
413
+ 2.40586 MB. 2.59978%. Mul
414
+ 1.78125 MB. 1.92483%. Add
415
+ 92.5406 MB in Total
416
+ Feature Memory Written per operator type:
417
+ 24.9042 MB. 32.9424%. Conv
418
+ 24.8873 MB. 32.92%. SpatialBN
419
+ 22.5235 MB. 29.7932%. Relu
420
+ 2.38963 MB. 3.16092%. Mul
421
+ 0.890624 MB. 1.17809%. Add
422
+ 0.004 MB. 0.00529106%. FC
423
+ 75.5993 MB in Total
424
+ Parameter Memory per operator type:
425
+ 10.2732 MB. 66.1459%. Conv
426
+ 5.124 MB. 32.9917%. FC
427
+ 0.133952 MB. 0.86247%. SpatialBN
428
+ 0 MB. 0%. Add
429
+ 0 MB. 0%. Mul
430
+ 0 MB. 0%. Relu
431
+ 15.5312 MB in Total
432
+ ```
433
+
434
+ ### Optimized
435
+ ```
436
+ Main run finished. Milliseconds per iter: 24.2367. Iters per second: 41.2597
437
+ Time per operator type:
438
+ 22.0547 ms. 91.1375%. Conv
439
+ 1.49096 ms. 6.16116%. Relu
440
+ 0.253417 ms. 1.0472%. Mul
441
+ 0.18506 ms. 0.76473%. FC
442
+ 0.112942 ms. 0.466717%. AveragePool
443
+ 0.086769 ms. 0.358559%. Add
444
+ 0.0127889 ms. 0.0528479%. Sigmoid
445
+ 0.0027346 ms. 0.0113003%. Squeeze
446
+ 24.1994 ms in Total
447
+ FLOP per operator type:
448
+ 0.620598 GFLOP. 99.4581%. Conv
449
+ 0.002561 GFLOP. 0.41043%. FC
450
+ 0.000597408 GFLOP. 0.0957417%. Mul
451
+ 0.000222656 GFLOP. 0.0356832%. Add
452
+ 0 GFLOP. 0%. Relu
453
+ 0.623979 GFLOP in Total
454
+ Feature Memory Read per operator type:
455
+ 35.6127 MB. 52.7968%. Conv
456
+ 22.5235 MB. 33.3917%. Relu
457
+ 5.12912 MB. 7.60406%. FC
458
+ 2.40586 MB. 3.56675%. Mul
459
+ 1.78125 MB. 2.64075%. Add
460
+ 67.4524 MB in Total
461
+ Feature Memory Written per operator type:
462
+ 24.9042 MB. 49.1092%. Conv
463
+ 22.5235 MB. 44.4145%. Relu
464
+ 2.38963 MB. 4.71216%. Mul
465
+ 0.890624 MB. 1.75624%. Add
466
+ 0.004 MB. 0.00788768%. FC
467
+ 50.712 MB in Total
468
+ Parameter Memory per operator type:
469
+ 10.2732 MB. 66.7213%. Conv
470
+ 5.124 MB. 33.2787%. FC
471
+ 0 MB. 0%. Add
472
+ 0 MB. 0%. Mul
473
+ 0 MB. 0%. Relu
474
+ 15.3972 MB in Total
475
+ ```
476
+ ## MnasNet-B1
477
+
478
+ ### Unoptimized
479
+ ```
480
+ Main run finished. Milliseconds per iter: 28.3109. Iters per second: 35.322
481
+ Time per operator type:
482
+ 29.1121 ms. 83.3081%. Conv
483
+ 4.14959 ms. 11.8746%. SpatialBN
484
+ 1.35823 ms. 3.88675%. Relu
485
+ 0.186188 ms. 0.532802%. FC
486
+ 0.116244 ms. 0.332647%. Add
487
+ 0.018641 ms. 0.0533437%. AveragePool
488
+ 0.0040904 ms. 0.0117052%. Squeeze
489
+ 34.9451 ms in Total
490
+ FLOP per operator type:
491
+ 0.626272 GFLOP. 96.2088%. Conv
492
+ 0.0218266 GFLOP. 3.35303%. SpatialBN
493
+ 0.002561 GFLOP. 0.393424%. FC
494
+ 0.000291648 GFLOP. 0.0448034%. Add
495
+ 0 GFLOP. 0%. Relu
496
+ 0.650951 GFLOP in Total
497
+ Feature Memory Read per operator type:
498
+ 34.4354 MB. 41.3788%. Conv
499
+ 22.1299 MB. 26.5921%. SpatialBN
500
+ 19.1923 MB. 23.0622%. Relu
501
+ 5.12912 MB. 6.16333%. FC
502
+ 2.33318 MB. 2.80364%. Add
503
+ 83.2199 MB in Total
504
+ Feature Memory Written per operator type:
505
+ 21.8266 MB. 34.0955%. Conv
506
+ 21.8266 MB. 34.0955%. SpatialBN
507
+ 19.1923 MB. 29.9805%. Relu
508
+ 1.16659 MB. 1.82234%. Add
509
+ 0.004 MB. 0.00624844%. FC
510
+ 64.016 MB in Total
511
+ Parameter Memory per operator type:
512
+ 12.2576 MB. 69.9104%. Conv
513
+ 5.124 MB. 29.2245%. FC
514
+ 0.15168 MB. 0.865099%. SpatialBN
515
+ 0 MB. 0%. Add
516
+ 0 MB. 0%. Relu
517
+ 17.5332 MB in Total
518
+ ```
519
+
520
+ ### Optimized
521
+ ```
522
+ Main run finished. Milliseconds per iter: 26.6364. Iters per second: 37.5426
523
+ Time per operator type:
524
+ 24.9888 ms. 94.0962%. Conv
525
+ 1.26147 ms. 4.75011%. Relu
526
+ 0.176234 ms. 0.663619%. FC
527
+ 0.113309 ms. 0.426672%. Add
528
+ 0.0138708 ms. 0.0522311%. AveragePool
529
+ 0.00295685 ms. 0.0111341%. Squeeze
530
+ 26.5566 ms in Total
531
+ FLOP per operator type:
532
+ 0.626272 GFLOP. 99.5466%. Conv
533
+ 0.002561 GFLOP. 0.407074%. FC
534
+ 0.000291648 GFLOP. 0.0463578%. Add
535
+ 0 GFLOP. 0%. Relu
536
+ 0.629124 GFLOP in Total
537
+ Feature Memory Read per operator type:
538
+ 34.5112 MB. 56.4224%. Conv
539
+ 19.1923 MB. 31.3775%. Relu
540
+ 5.12912 MB. 8.3856%. FC
541
+ 2.33318 MB. 3.81452%. Add
542
+ 61.1658 MB in Total
543
+ Feature Memory Written per operator type:
544
+ 21.8266 MB. 51.7346%. Conv
545
+ 19.1923 MB. 45.4908%. Relu
546
+ 1.16659 MB. 2.76513%. Add
547
+ 0.004 MB. 0.00948104%. FC
548
+ 42.1895 MB in Total
549
+ Parameter Memory per operator type:
550
+ 12.2576 MB. 70.5205%. Conv
551
+ 5.124 MB. 29.4795%. FC
552
+ 0 MB. 0%. Add
553
+ 0 MB. 0%. Relu
554
+ 17.3816 MB in Total
555
+ ```
annotator/normalbae/models/submodules/efficientnet_repo/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "{}"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2020 Ross Wightman
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
annotator/normalbae/models/submodules/efficientnet_repo/README.md ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # (Generic) EfficientNets for PyTorch
2
+
3
+ A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter efficient architectures derived from the MobileNet V1/V2 block sequence, including those found via automated neural architecture search.
4
+
5
+ All models are implemented by GenEfficientNet or MobileNetV3 classes, with string based architecture definitions to configure the block layouts (idea from [here](https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py))
6
+
7
+ ## What's New
8
+
9
+ ### Aug 19, 2020
10
+ * Add updated PyTorch trained EfficientNet-B3 weights trained by myself with `timm` (82.1 top-1)
11
+ * Add PyTorch trained EfficientNet-Lite0 contributed by [@hal-314](https://github.com/hal-314) (75.5 top-1)
12
+ * Update ONNX and Caffe2 export / utility scripts to work with latest PyTorch / ONNX
13
+ * ONNX runtime based validation script added
14
+ * activations (mostly) brought in sync with `timm` equivalents
15
+
16
+
17
+ ### April 5, 2020
18
+ * Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite
19
+ * 3.5M param MobileNet-V2 100 @ 73%
20
+ * 4.5M param MobileNet-V2 110d @ 75%
21
+ * 6.1M param MobileNet-V2 140 @ 76.5%
22
+ * 5.8M param MobileNet-V2 120d @ 77.3%
23
+
24
+ ### March 23, 2020
25
+ * Add EfficientNet-Lite models w/ weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite)
26
+ * Add PyTorch trained MobileNet-V3 Large weights with 75.77% top-1
27
+ * IMPORTANT CHANGE (if training from scratch) - weight init changed to better match Tensorflow impl, set `fix_group_fanout=False` in `initialize_weight_goog` for old behavior
28
+
29
+ ### Feb 12, 2020
30
+ * Add EfficientNet-L2 and B0-B7 NoisyStudent weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
31
+ * Port new EfficientNet-B8 (RandAugment) weights from TF TPU, these are different than the B8 AdvProp, different input normalization.
32
+ * Add RandAugment PyTorch trained EfficientNet-ES (EdgeTPU-Small) weights with 78.1 top-1. Trained by [Andrew Lavin](https://github.com/andravin)
33
+
34
+ ### Jan 22, 2020
35
+ * Update weights for EfficientNet B0, B2, B3 and MixNet-XL with latest RandAugment trained weights. Trained with (https://github.com/rwightman/pytorch-image-models)
36
+ * Fix torchscript compatibility for PyTorch 1.4, add torchscript support for MixedConv2d using ModuleDict
37
+ * Test models, torchscript, onnx export with PyTorch 1.4 -- no issues
38
+
39
+ ### Nov 22, 2019
40
+ * New top-1 high! Ported official TF EfficientNet AdvProp (https://arxiv.org/abs/1911.09665) weights and B8 model spec. Created a new set of `ap` models since they use a different
41
+ preprocessing (Inception mean/std) from the original EfficientNet base/AA/RA weights.
42
+
43
+ ### Nov 15, 2019
44
+ * Ported official TF MobileNet-V3 float32 large/small/minimalistic weights
45
+ * Modifications to MobileNet-V3 model and components to support some additional config needed for differences between TF MobileNet-V3 and mine
46
+
47
+ ### Oct 30, 2019
48
+ * Many of the models will now work with torch.jit.script, MixNet being the biggest exception
49
+ * Improved interface for enabling torchscript or ONNX export compatible modes (via config)
50
+ * Add JIT optimized mem-efficient Swish/Mish autograd.fn in addition to memory-efficient autgrad.fn
51
+ * Activation factory to select best version of activation by name or override one globally
52
+ * Add pretrained checkpoint load helper that handles input conv and classifier changes
53
+
54
+ ### Oct 27, 2019
55
+ * Add CondConv EfficientNet variants ported from https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv
56
+ * Add RandAug weights for TF EfficientNet B5 and B7 from https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
57
+ * Bring over MixNet-XL model and depth scaling algo from my pytorch-image-models code base
58
+ * Switch activations and global pooling to modules
59
+ * Add memory-efficient Swish/Mish impl
60
+ * Add as_sequential() method to all models and allow as an argument in entrypoint fns
61
+ * Move MobileNetV3 into own file since it has a different head
62
+ * Remove ChamNet, MobileNet V2/V1 since they will likely never be used here
63
+
64
+ ## Models
65
+
66
+ Implemented models include:
67
+ * EfficientNet NoisyStudent (B0-B7, L2) (https://arxiv.org/abs/1911.04252)
68
+ * EfficientNet AdvProp (B0-B8) (https://arxiv.org/abs/1911.09665)
69
+ * EfficientNet (B0-B8) (https://arxiv.org/abs/1905.11946)
70
+ * EfficientNet-EdgeTPU (S, M, L) (https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html)
71
+ * EfficientNet-CondConv (https://arxiv.org/abs/1904.04971)
72
+ * EfficientNet-Lite (https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite)
73
+ * MixNet (https://arxiv.org/abs/1907.09595)
74
+ * MNASNet B1, A1 (Squeeze-Excite), and Small (https://arxiv.org/abs/1807.11626)
75
+ * MobileNet-V3 (https://arxiv.org/abs/1905.02244)
76
+ * FBNet-C (https://arxiv.org/abs/1812.03443)
77
+ * Single-Path NAS (https://arxiv.org/abs/1904.02877)
78
+
79
+ I originally implemented and trained some these models with code [here](https://github.com/rwightman/pytorch-image-models), this repository contains just the GenEfficientNet models, validation, and associated ONNX/Caffe2 export code.
80
+
81
+ ## Pretrained
82
+
83
+ I've managed to train several of the models to accuracies close to or above the originating papers and official impl. My training code is here: https://github.com/rwightman/pytorch-image-models
84
+
85
+
86
+ |Model | Prec@1 (Err) | Prec@5 (Err) | Param#(M) | MAdds(M) | Image Scaling | Resolution | Crop |
87
+ |---|---|---|---|---|---|---|---|
88
+ | efficientnet_b3 | 82.240 (17.760) | 96.116 (3.884) | 12.23 | TBD | bicubic | 320 | 1.0 |
89
+ | efficientnet_b3 | 82.076 (17.924) | 96.020 (3.980) | 12.23 | TBD | bicubic | 300 | 0.904 |
90
+ | mixnet_xl | 81.074 (18.926) | 95.282 (4.718) | 11.90 | TBD | bicubic | 256 | 1.0 |
91
+ | efficientnet_b2 | 80.612 (19.388) | 95.318 (4.682) | 9.1 | TBD | bicubic | 288 | 1.0 |
92
+ | mixnet_xl | 80.476 (19.524) | 94.936 (5.064) | 11.90 | TBD | bicubic | 224 | 0.875 |
93
+ | efficientnet_b2 | 80.288 (19.712) | 95.166 (4.834) | 9.1 | 1003 | bicubic | 260 | 0.890 |
94
+ | mixnet_l | 78.976 (21.024 | 94.184 (5.816) | 7.33 | TBD | bicubic | 224 | 0.875 |
95
+ | efficientnet_b1 | 78.692 (21.308) | 94.086 (5.914) | 7.8 | 694 | bicubic | 240 | 0.882 |
96
+ | efficientnet_es | 78.066 (21.934) | 93.926 (6.074) | 5.44 | TBD | bicubic | 224 | 0.875 |
97
+ | efficientnet_b0 | 77.698 (22.302) | 93.532 (6.468) | 5.3 | 390 | bicubic | 224 | 0.875 |
98
+ | mobilenetv2_120d | 77.294 (22.706 | 93.502 (6.498) | 5.8 | TBD | bicubic | 224 | 0.875 |
99
+ | mixnet_m | 77.256 (22.744) | 93.418 (6.582) | 5.01 | 353 | bicubic | 224 | 0.875 |
100
+ | mobilenetv2_140 | 76.524 (23.476) | 92.990 (7.010) | 6.1 | TBD | bicubic | 224 | 0.875 |
101
+ | mixnet_s | 75.988 (24.012) | 92.794 (7.206) | 4.13 | TBD | bicubic | 224 | 0.875 |
102
+ | mobilenetv3_large_100 | 75.766 (24.234) | 92.542 (7.458) | 5.5 | TBD | bicubic | 224 | 0.875 |
103
+ | mobilenetv3_rw | 75.634 (24.366) | 92.708 (7.292) | 5.5 | 219 | bicubic | 224 | 0.875 |
104
+ | efficientnet_lite0 | 75.472 (24.528) | 92.520 (7.480) | 4.65 | TBD | bicubic | 224 | 0.875 |
105
+ | mnasnet_a1 | 75.448 (24.552) | 92.604 (7.396) | 3.9 | 312 | bicubic | 224 | 0.875 |
106
+ | fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6 | 385 | bilinear | 224 | 0.875 |
107
+ | mobilenetv2_110d | 75.052 (24.948) | 92.180 (7.820) | 4.5 | TBD | bicubic | 224 | 0.875 |
108
+ | mnasnet_b1 | 74.658 (25.342) | 92.114 (7.886) | 4.4 | 315 | bicubic | 224 | 0.875 |
109
+ | spnasnet_100 | 74.084 (25.916) | 91.818 (8.182) | 4.4 | TBD | bilinear | 224 | 0.875 |
110
+ | mobilenetv2_100 | 72.978 (27.022) | 91.016 (8.984) | 3.5 | TBD | bicubic | 224 | 0.875 |
111
+
112
+
113
+ More pretrained models to come...
114
+
115
+
116
+ ## Ported Weights
117
+
118
+ The weights ported from Tensorflow checkpoints for the EfficientNet models do pretty much match accuracy in Tensorflow once a SAME convolution padding equivalent is added, and the same crop factors, image scaling, etc (see table) are used via cmd line args.
119
+
120
+ **IMPORTANT:**
121
+ * Tensorflow ported weights for EfficientNet AdvProp (AP), EfficientNet EdgeTPU, EfficientNet-CondConv, EfficientNet-Lite, and MobileNet-V3 models use Inception style (0.5, 0.5, 0.5) for mean and std.
122
+ * Enabling the Tensorflow preprocessing pipeline with `--tf-preprocessing` at validation time will improve scores by 0.1-0.5%, very close to original TF impl.
123
+
124
+ To run validation for tf_efficientnet_b5:
125
+ `python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b5 -b 64 --img-size 456 --crop-pct 0.934 --interpolation bicubic`
126
+
127
+ To run validation w/ TF preprocessing for tf_efficientnet_b5:
128
+ `python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b5 -b 64 --img-size 456 --tf-preprocessing`
129
+
130
+ To run validation for a model with Inception preprocessing, ie EfficientNet-B8 AdvProp:
131
+ `python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b8_ap -b 48 --num-gpu 2 --img-size 672 --crop-pct 0.954 --mean 0.5 --std 0.5`
132
+
133
+ |Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Image Size | Crop |
134
+ |---|---|---|---|---|---|---|
135
+ | tf_efficientnet_l2_ns *tfp | 88.352 (11.648) | 98.652 (1.348) | 480 | bicubic | 800 | N/A |
136
+ | tf_efficientnet_l2_ns | TBD | TBD | 480 | bicubic | 800 | 0.961 |
137
+ | tf_efficientnet_l2_ns_475 | 88.234 (11.766) | 98.546 (1.454) | 480 | bicubic | 475 | 0.936 |
138
+ | tf_efficientnet_l2_ns_475 *tfp | 88.172 (11.828) | 98.566 (1.434) | 480 | bicubic | 475 | N/A |
139
+ | tf_efficientnet_b7_ns *tfp | 86.844 (13.156) | 98.084 (1.916) | 66.35 | bicubic | 600 | N/A |
140
+ | tf_efficientnet_b7_ns | 86.840 (13.160) | 98.094 (1.906) | 66.35 | bicubic | 600 | N/A |
141
+ | tf_efficientnet_b6_ns | 86.452 (13.548) | 97.882 (2.118) | 43.04 | bicubic | 528 | N/A |
142
+ | tf_efficientnet_b6_ns *tfp | 86.444 (13.556) | 97.880 (2.120) | 43.04 | bicubic | 528 | N/A |
143
+ | tf_efficientnet_b5_ns *tfp | 86.064 (13.936) | 97.746 (2.254) | 30.39 | bicubic | 456 | N/A |
144
+ | tf_efficientnet_b5_ns | 86.088 (13.912) | 97.752 (2.248) | 30.39 | bicubic | 456 | N/A |
145
+ | tf_efficientnet_b8_ap *tfp | 85.436 (14.564) | 97.272 (2.728) | 87.4 | bicubic | 672 | N/A |
146
+ | tf_efficientnet_b8 *tfp | 85.384 (14.616) | 97.394 (2.606) | 87.4 | bicubic | 672 | N/A |
147
+ | tf_efficientnet_b8 | 85.370 (14.630) | 97.390 (2.610) | 87.4 | bicubic | 672 | 0.954 |
148
+ | tf_efficientnet_b8_ap | 85.368 (14.632) | 97.294 (2.706) | 87.4 | bicubic | 672 | 0.954 |
149
+ | tf_efficientnet_b4_ns *tfp | 85.298 (14.702) | 97.504 (2.496) | 19.34 | bicubic | 380 | N/A |
150
+ | tf_efficientnet_b4_ns | 85.162 (14.838) | 97.470 (2.530) | 19.34 | bicubic | 380 | 0.922 |
151
+ | tf_efficientnet_b7_ap *tfp | 85.154 (14.846) | 97.244 (2.756) | 66.35 | bicubic | 600 | N/A |
152
+ | tf_efficientnet_b7_ap | 85.118 (14.882) | 97.252 (2.748) | 66.35 | bicubic | 600 | 0.949 |
153
+ | tf_efficientnet_b7 *tfp | 84.940 (15.060) | 97.214 (2.786) | 66.35 | bicubic | 600 | N/A |
154
+ | tf_efficientnet_b7 | 84.932 (15.068) | 97.208 (2.792) | 66.35 | bicubic | 600 | 0.949 |
155
+ | tf_efficientnet_b6_ap | 84.786 (15.214) | 97.138 (2.862) | 43.04 | bicubic | 528 | 0.942 |
156
+ | tf_efficientnet_b6_ap *tfp | 84.760 (15.240) | 97.124 (2.876) | 43.04 | bicubic | 528 | N/A |
157
+ | tf_efficientnet_b5_ap *tfp | 84.276 (15.724) | 96.932 (3.068) | 30.39 | bicubic | 456 | N/A |
158
+ | tf_efficientnet_b5_ap | 84.254 (15.746) | 96.976 (3.024) | 30.39 | bicubic | 456 | 0.934 |
159
+ | tf_efficientnet_b6 *tfp | 84.140 (15.860) | 96.852 (3.148) | 43.04 | bicubic | 528 | N/A |
160
+ | tf_efficientnet_b6 | 84.110 (15.890) | 96.886 (3.114) | 43.04 | bicubic | 528 | 0.942 |
161
+ | tf_efficientnet_b3_ns *tfp | 84.054 (15.946) | 96.918 (3.082) | 12.23 | bicubic | 300 | N/A |
162
+ | tf_efficientnet_b3_ns | 84.048 (15.952) | 96.910 (3.090) | 12.23 | bicubic | 300 | .904 |
163
+ | tf_efficientnet_b5 *tfp | 83.822 (16.178) | 96.756 (3.244) | 30.39 | bicubic | 456 | N/A |
164
+ | tf_efficientnet_b5 | 83.812 (16.188) | 96.748 (3.252) | 30.39 | bicubic | 456 | 0.934 |
165
+ | tf_efficientnet_b4_ap *tfp | 83.278 (16.722) | 96.376 (3.624) | 19.34 | bicubic | 380 | N/A |
166
+ | tf_efficientnet_b4_ap | 83.248 (16.752) | 96.388 (3.612) | 19.34 | bicubic | 380 | 0.922 |
167
+ | tf_efficientnet_b4 | 83.022 (16.978) | 96.300 (3.700) | 19.34 | bicubic | 380 | 0.922 |
168
+ | tf_efficientnet_b4 *tfp | 82.948 (17.052) | 96.308 (3.692) | 19.34 | bicubic | 380 | N/A |
169
+ | tf_efficientnet_b2_ns *tfp | 82.436 (17.564) | 96.268 (3.732) | 9.11 | bicubic | 260 | N/A |
170
+ | tf_efficientnet_b2_ns | 82.380 (17.620) | 96.248 (3.752) | 9.11 | bicubic | 260 | 0.89 |
171
+ | tf_efficientnet_b3_ap *tfp | 81.882 (18.118) | 95.662 (4.338) | 12.23 | bicubic | 300 | N/A |
172
+ | tf_efficientnet_b3_ap | 81.828 (18.172) | 95.624 (4.376) | 12.23 | bicubic | 300 | 0.904 |
173
+ | tf_efficientnet_b3 | 81.636 (18.364) | 95.718 (4.282) | 12.23 | bicubic | 300 | 0.904 |
174
+ | tf_efficientnet_b3 *tfp | 81.576 (18.424) | 95.662 (4.338) | 12.23 | bicubic | 300 | N/A |
175
+ | tf_efficientnet_lite4 | 81.528 (18.472) | 95.668 (4.332) | 13.00 | bilinear | 380 | 0.92 |
176
+ | tf_efficientnet_b1_ns *tfp | 81.514 (18.486) | 95.776 (4.224) | 7.79 | bicubic | 240 | N/A |
177
+ | tf_efficientnet_lite4 *tfp | 81.502 (18.498) | 95.676 (4.324) | 13.00 | bilinear | 380 | N/A |
178
+ | tf_efficientnet_b1_ns | 81.388 (18.612) | 95.738 (4.262) | 7.79 | bicubic | 240 | 0.88 |
179
+ | tf_efficientnet_el | 80.534 (19.466) | 95.190 (4.810) | 10.59 | bicubic | 300 | 0.904 |
180
+ | tf_efficientnet_el *tfp | 80.476 (19.524) | 95.200 (4.800) | 10.59 | bicubic | 300 | N/A |
181
+ | tf_efficientnet_b2_ap *tfp | 80.420 (19.580) | 95.040 (4.960) | 9.11 | bicubic | 260 | N/A |
182
+ | tf_efficientnet_b2_ap | 80.306 (19.694) | 95.028 (4.972) | 9.11 | bicubic | 260 | 0.890 |
183
+ | tf_efficientnet_b2 *tfp | 80.188 (19.812) | 94.974 (5.026) | 9.11 | bicubic | 260 | N/A |
184
+ | tf_efficientnet_b2 | 80.086 (19.914) | 94.908 (5.092) | 9.11 | bicubic | 260 | 0.890 |
185
+ | tf_efficientnet_lite3 | 79.812 (20.188) | 94.914 (5.086) | 8.20 | bilinear | 300 | 0.904 |
186
+ | tf_efficientnet_lite3 *tfp | 79.734 (20.266) | 94.838 (5.162) | 8.20 | bilinear | 300 | N/A |
187
+ | tf_efficientnet_b1_ap *tfp | 79.532 (20.468) | 94.378 (5.622) | 7.79 | bicubic | 240 | N/A |
188
+ | tf_efficientnet_cc_b1_8e *tfp | 79.464 (20.536)| 94.492 (5.508) | 39.7 | bicubic | 240 | 0.88 |
189
+ | tf_efficientnet_cc_b1_8e | 79.298 (20.702) | 94.364 (5.636) | 39.7 | bicubic | 240 | 0.88 |
190
+ | tf_efficientnet_b1_ap | 79.278 (20.722) | 94.308 (5.692) | 7.79 | bicubic | 240 | 0.88 |
191
+ | tf_efficientnet_b1 *tfp | 79.172 (20.828) | 94.450 (5.550) | 7.79 | bicubic | 240 | N/A |
192
+ | tf_efficientnet_em *tfp | 78.958 (21.042) | 94.458 (5.542) | 6.90 | bicubic | 240 | N/A |
193
+ | tf_efficientnet_b0_ns *tfp | 78.806 (21.194) | 94.496 (5.504) | 5.29 | bicubic | 224 | N/A |
194
+ | tf_mixnet_l *tfp | 78.846 (21.154) | 94.212 (5.788) | 7.33 | bilinear | 224 | N/A |
195
+ | tf_efficientnet_b1 | 78.826 (21.174) | 94.198 (5.802) | 7.79 | bicubic | 240 | 0.88 |
196
+ | tf_mixnet_l | 78.770 (21.230) | 94.004 (5.996) | 7.33 | bicubic | 224 | 0.875 |
197
+ | tf_efficientnet_em | 78.742 (21.258) | 94.332 (5.668) | 6.90 | bicubic | 240 | 0.875 |
198
+ | tf_efficientnet_b0_ns | 78.658 (21.342) | 94.376 (5.624) | 5.29 | bicubic | 224 | 0.875 |
199
+ | tf_efficientnet_cc_b0_8e *tfp | 78.314 (21.686) | 93.790 (6.210) | 24.0 | bicubic | 224 | 0.875 |
200
+ | tf_efficientnet_cc_b0_8e | 77.908 (22.092) | 93.656 (6.344) | 24.0 | bicubic | 224 | 0.875 |
201
+ | tf_efficientnet_cc_b0_4e *tfp | 77.746 (22.254) | 93.552 (6.448) | 13.3 | bicubic | 224 | 0.875 |
202
+ | tf_efficientnet_cc_b0_4e | 77.304 (22.696) | 93.332 (6.668) | 13.3 | bicubic | 224 | 0.875 |
203
+ | tf_efficientnet_es *tfp | 77.616 (22.384) | 93.750 (6.250) | 5.44 | bicubic | 224 | N/A |
204
+ | tf_efficientnet_lite2 *tfp | 77.544 (22.456) | 93.800 (6.200) | 6.09 | bilinear | 260 | N/A |
205
+ | tf_efficientnet_lite2 | 77.460 (22.540) | 93.746 (6.254) | 6.09 | bicubic | 260 | 0.89 |
206
+ | tf_efficientnet_b0_ap *tfp | 77.514 (22.486) | 93.576 (6.424) | 5.29 | bicubic | 224 | N/A |
207
+ | tf_efficientnet_es | 77.264 (22.736) | 93.600 (6.400) | 5.44 | bicubic | 224 | N/A |
208
+ | tf_efficientnet_b0 *tfp | 77.258 (22.742) | 93.478 (6.522) | 5.29 | bicubic | 224 | N/A |
209
+ | tf_efficientnet_b0_ap | 77.084 (22.916) | 93.254 (6.746) | 5.29 | bicubic | 224 | 0.875 |
210
+ | tf_mixnet_m *tfp | 77.072 (22.928) | 93.368 (6.632) | 5.01 | bilinear | 224 | N/A |
211
+ | tf_mixnet_m | 76.950 (23.050) | 93.156 (6.844) | 5.01 | bicubic | 224 | 0.875 |
212
+ | tf_efficientnet_b0 | 76.848 (23.152) | 93.228 (6.772) | 5.29 | bicubic | 224 | 0.875 |
213
+ | tf_efficientnet_lite1 *tfp | 76.764 (23.236) | 93.326 (6.674) | 5.42 | bilinear | 240 | N/A |
214
+ | tf_efficientnet_lite1 | 76.638 (23.362) | 93.232 (6.768) | 5.42 | bicubic | 240 | 0.882 |
215
+ | tf_mixnet_s *tfp | 75.800 (24.200) | 92.788 (7.212) | 4.13 | bilinear | 224 | N/A |
216
+ | tf_mobilenetv3_large_100 *tfp | 75.768 (24.232) | 92.710 (7.290) | 5.48 | bilinear | 224 | N/A |
217
+ | tf_mixnet_s | 75.648 (24.352) | 92.636 (7.364) | 4.13 | bicubic | 224 | 0.875 |
218
+ | tf_mobilenetv3_large_100 | 75.516 (24.484) | 92.600 (7.400) | 5.48 | bilinear | 224 | 0.875 |
219
+ | tf_efficientnet_lite0 *tfp | 75.074 (24.926) | 92.314 (7.686) | 4.65 | bilinear | 224 | N/A |
220
+ | tf_efficientnet_lite0 | 74.842 (25.158) | 92.170 (7.830) | 4.65 | bicubic | 224 | 0.875 |
221
+ | tf_mobilenetv3_large_075 *tfp | 73.730 (26.270) | 91.616 (8.384) | 3.99 | bilinear | 224 |N/A |
222
+ | tf_mobilenetv3_large_075 | 73.442 (26.558) | 91.352 (8.648) | 3.99 | bilinear | 224 | 0.875 |
223
+ | tf_mobilenetv3_large_minimal_100 *tfp | 72.678 (27.322) | 90.860 (9.140) | 3.92 | bilinear | 224 | N/A |
224
+ | tf_mobilenetv3_large_minimal_100 | 72.244 (27.756) | 90.636 (9.364) | 3.92 | bilinear | 224 | 0.875 |
225
+ | tf_mobilenetv3_small_100 *tfp | 67.918 (32.082) | 87.958 (12.042 | 2.54 | bilinear | 224 | N/A |
226
+ | tf_mobilenetv3_small_100 | 67.918 (32.082) | 87.662 (12.338) | 2.54 | bilinear | 224 | 0.875 |
227
+ | tf_mobilenetv3_small_075 *tfp | 66.142 (33.858) | 86.498 (13.502) | 2.04 | bilinear | 224 | N/A |
228
+ | tf_mobilenetv3_small_075 | 65.718 (34.282) | 86.136 (13.864) | 2.04 | bilinear | 224 | 0.875 |
229
+ | tf_mobilenetv3_small_minimal_100 *tfp | 63.378 (36.622) | 84.802 (15.198) | 2.04 | bilinear | 224 | N/A |
230
+ | tf_mobilenetv3_small_minimal_100 | 62.898 (37.102) | 84.230 (15.770) | 2.04 | bilinear | 224 | 0.875 |
231
+
232
+
233
+ *tfp models validated with `tf-preprocessing` pipeline
234
+
235
+ Google tf and tflite weights ported from official Tensorflow repositories
236
+ * https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
237
+ * https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
238
+ * https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
239
+
240
+ ## Usage
241
+
242
+ ### Environment
243
+
244
+ All development and testing has been done in Conda Python 3 environments on Linux x86-64 systems, specifically Python 3.6.x, 3.7.x, 3.8.x.
245
+
246
+ Users have reported that a Python 3 Anaconda install in Windows works. I have not verified this myself.
247
+
248
+ PyTorch versions 1.4, 1.5, 1.6 have been tested with this code.
249
+
250
+ I've tried to keep the dependencies minimal, the setup is as per the PyTorch default install instructions for Conda:
251
+ ```
252
+ conda create -n torch-env
253
+ conda activate torch-env
254
+ conda install -c pytorch pytorch torchvision cudatoolkit=10.2
255
+ ```
256
+
257
+ ### PyTorch Hub
258
+
259
+ Models can be accessed via the PyTorch Hub API
260
+
261
+ ```
262
+ >>> torch.hub.list('rwightman/gen-efficientnet-pytorch')
263
+ ['efficientnet_b0', ...]
264
+ >>> model = torch.hub.load('rwightman/gen-efficientnet-pytorch', 'efficientnet_b0', pretrained=True)
265
+ >>> model.eval()
266
+ >>> output = model(torch.randn(1,3,224,224))
267
+ ```
268
+
269
+ ### Pip
270
+ This package can be installed via pip.
271
+
272
+ Install (after conda env/install):
273
+ ```
274
+ pip install geffnet
275
+ ```
276
+
277
+ Eval use:
278
+ ```
279
+ >>> import geffnet
280
+ >>> m = geffnet.create_model('mobilenetv3_large_100', pretrained=True)
281
+ >>> m.eval()
282
+ ```
283
+
284
+ Train use:
285
+ ```
286
+ >>> import geffnet
287
+ >>> # models can also be created by using the entrypoint directly
288
+ >>> m = geffnet.efficientnet_b2(pretrained=True, drop_rate=0.25, drop_connect_rate=0.2)
289
+ >>> m.train()
290
+ ```
291
+
292
+ Create in a nn.Sequential container, for fast.ai, etc:
293
+ ```
294
+ >>> import geffnet
295
+ >>> m = geffnet.mixnet_l(pretrained=True, drop_rate=0.25, drop_connect_rate=0.2, as_sequential=True)
296
+ ```
297
+
298
+ ### Exporting
299
+
300
+ Scripts are included to
301
+ * export models to ONNX (`onnx_export.py`)
302
+ * optimized ONNX graph (`onnx_optimize.py` or `onnx_validate.py` w/ `--onnx-output-opt` arg)
303
+ * validate with ONNX runtime (`onnx_validate.py`)
304
+ * convert ONNX model to Caffe2 (`onnx_to_caffe.py`)
305
+ * validate in Caffe2 (`caffe2_validate.py`)
306
+ * benchmark in Caffe2 w/ FLOPs, parameters output (`caffe2_benchmark.py`)
307
+
308
+ As an example, to export the MobileNet-V3 pretrained model and then run an Imagenet validation:
309
+ ```
310
+ python onnx_export.py --model mobilenetv3_large_100 ./mobilenetv3_100.onnx
311
+ python onnx_validate.py /imagenet/validation/ --onnx-input ./mobilenetv3_100.onnx
312
+ ```
313
+
314
+ These scripts were tested to be working as of PyTorch 1.6 and ONNX 1.7 w/ ONNX runtime 1.4. Caffe2 compatible
315
+ export now requires additional args mentioned in the export script (not needed in earlier versions).
316
+
317
+ #### Export Notes
318
+ 1. The TF ported weights with the 'SAME' conv padding activated cannot be exported to ONNX unless `_EXPORTABLE` flag in `config.py` is set to True. Use `config.set_exportable(True)` as in the `onnx_export.py` script.
319
+ 2. TF ported models with 'SAME' padding will have the padding fixed at export time to the resolution used for export. Even though dynamic padding is supported in opset >= 11, I can't get it working.
320
+ 3. ONNX optimize facility doesn't work reliably in PyTorch 1.6 / ONNX 1.7. Fortunately, the onnxruntime based inference is working very well now and includes on the fly optimization.
321
+ 3. ONNX / Caffe2 export/import frequently breaks with different PyTorch and ONNX version releases. Please check their respective issue trackers before filing issues here.
322
+
323
+
annotator/normalbae/models/submodules/efficientnet_repo/caffe2_benchmark.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Caffe2 validation script
2
+
3
+ This script runs Caffe2 benchmark on exported ONNX model.
4
+ It is a useful tool for reporting model FLOPS.
5
+
6
+ Copyright 2020 Ross Wightman
7
+ """
8
+ import argparse
9
+ from caffe2.python import core, workspace, model_helper
10
+ from caffe2.proto import caffe2_pb2
11
+
12
+
13
+ parser = argparse.ArgumentParser(description='Caffe2 Model Benchmark')
14
+ parser.add_argument('--c2-prefix', default='', type=str, metavar='NAME',
15
+ help='caffe2 model pb name prefix')
16
+ parser.add_argument('--c2-init', default='', type=str, metavar='PATH',
17
+ help='caffe2 model init .pb')
18
+ parser.add_argument('--c2-predict', default='', type=str, metavar='PATH',
19
+ help='caffe2 model predict .pb')
20
+ parser.add_argument('-b', '--batch-size', default=1, type=int,
21
+ metavar='N', help='mini-batch size (default: 1)')
22
+ parser.add_argument('--img-size', default=224, type=int,
23
+ metavar='N', help='Input image dimension, uses model default if empty')
24
+
25
+
26
+ def main():
27
+ args = parser.parse_args()
28
+ args.gpu_id = 0
29
+ if args.c2_prefix:
30
+ args.c2_init = args.c2_prefix + '.init.pb'
31
+ args.c2_predict = args.c2_prefix + '.predict.pb'
32
+
33
+ model = model_helper.ModelHelper(name="le_net", init_params=False)
34
+
35
+ # Bring in the init net from init_net.pb
36
+ init_net_proto = caffe2_pb2.NetDef()
37
+ with open(args.c2_init, "rb") as f:
38
+ init_net_proto.ParseFromString(f.read())
39
+ model.param_init_net = core.Net(init_net_proto)
40
+
41
+ # bring in the predict net from predict_net.pb
42
+ predict_net_proto = caffe2_pb2.NetDef()
43
+ with open(args.c2_predict, "rb") as f:
44
+ predict_net_proto.ParseFromString(f.read())
45
+ model.net = core.Net(predict_net_proto)
46
+
47
+ # CUDA performance not impressive
48
+ #device_opts = core.DeviceOption(caffe2_pb2.PROTO_CUDA, args.gpu_id)
49
+ #model.net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
50
+ #model.param_init_net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
51
+
52
+ input_blob = model.net.external_inputs[0]
53
+ model.param_init_net.GaussianFill(
54
+ [],
55
+ input_blob.GetUnscopedName(),
56
+ shape=(args.batch_size, 3, args.img_size, args.img_size),
57
+ mean=0.0,
58
+ std=1.0)
59
+ workspace.RunNetOnce(model.param_init_net)
60
+ workspace.CreateNet(model.net, overwrite=True)
61
+ workspace.BenchmarkNet(model.net.Proto().name, 5, 20, True)
62
+
63
+
64
+ if __name__ == '__main__':
65
+ main()
annotator/normalbae/models/submodules/efficientnet_repo/caffe2_validate.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Caffe2 validation script
2
+
3
+ This script is created to verify exported ONNX models running in Caffe2
4
+ It utilizes the same PyTorch dataloader/processing pipeline for a
5
+ fair comparison against the originals.
6
+
7
+ Copyright 2020 Ross Wightman
8
+ """
9
+ import argparse
10
+ import numpy as np
11
+ from caffe2.python import core, workspace, model_helper
12
+ from caffe2.proto import caffe2_pb2
13
+ from data import create_loader, resolve_data_config, Dataset
14
+ from utils import AverageMeter
15
+ import time
16
+
17
+ parser = argparse.ArgumentParser(description='Caffe2 ImageNet Validation')
18
+ parser.add_argument('data', metavar='DIR',
19
+ help='path to dataset')
20
+ parser.add_argument('--c2-prefix', default='', type=str, metavar='NAME',
21
+ help='caffe2 model pb name prefix')
22
+ parser.add_argument('--c2-init', default='', type=str, metavar='PATH',
23
+ help='caffe2 model init .pb')
24
+ parser.add_argument('--c2-predict', default='', type=str, metavar='PATH',
25
+ help='caffe2 model predict .pb')
26
+ parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
27
+ help='number of data loading workers (default: 2)')
28
+ parser.add_argument('-b', '--batch-size', default=256, type=int,
29
+ metavar='N', help='mini-batch size (default: 256)')
30
+ parser.add_argument('--img-size', default=None, type=int,
31
+ metavar='N', help='Input image dimension, uses model default if empty')
32
+ parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
33
+ help='Override mean pixel value of dataset')
34
+ parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
35
+ help='Override std deviation of of dataset')
36
+ parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT',
37
+ help='Override default crop pct of 0.875')
38
+ parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
39
+ help='Image resize interpolation type (overrides model)')
40
+ parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true',
41
+ help='use tensorflow mnasnet preporcessing')
42
+ parser.add_argument('--print-freq', '-p', default=10, type=int,
43
+ metavar='N', help='print frequency (default: 10)')
44
+
45
+
46
+ def main():
47
+ args = parser.parse_args()
48
+ args.gpu_id = 0
49
+ if args.c2_prefix:
50
+ args.c2_init = args.c2_prefix + '.init.pb'
51
+ args.c2_predict = args.c2_prefix + '.predict.pb'
52
+
53
+ model = model_helper.ModelHelper(name="validation_net", init_params=False)
54
+
55
+ # Bring in the init net from init_net.pb
56
+ init_net_proto = caffe2_pb2.NetDef()
57
+ with open(args.c2_init, "rb") as f:
58
+ init_net_proto.ParseFromString(f.read())
59
+ model.param_init_net = core.Net(init_net_proto)
60
+
61
+ # bring in the predict net from predict_net.pb
62
+ predict_net_proto = caffe2_pb2.NetDef()
63
+ with open(args.c2_predict, "rb") as f:
64
+ predict_net_proto.ParseFromString(f.read())
65
+ model.net = core.Net(predict_net_proto)
66
+
67
+ data_config = resolve_data_config(None, args)
68
+ loader = create_loader(
69
+ Dataset(args.data, load_bytes=args.tf_preprocessing),
70
+ input_size=data_config['input_size'],
71
+ batch_size=args.batch_size,
72
+ use_prefetcher=False,
73
+ interpolation=data_config['interpolation'],
74
+ mean=data_config['mean'],
75
+ std=data_config['std'],
76
+ num_workers=args.workers,
77
+ crop_pct=data_config['crop_pct'],
78
+ tensorflow_preprocessing=args.tf_preprocessing)
79
+
80
+ # this is so obvious, wonderful interface </sarcasm>
81
+ input_blob = model.net.external_inputs[0]
82
+ output_blob = model.net.external_outputs[0]
83
+
84
+ if True:
85
+ device_opts = None
86
+ else:
87
+ # CUDA is crashing, no idea why, awesome error message, give it a try for kicks
88
+ device_opts = core.DeviceOption(caffe2_pb2.PROTO_CUDA, args.gpu_id)
89
+ model.net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
90
+ model.param_init_net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
91
+
92
+ model.param_init_net.GaussianFill(
93
+ [], input_blob.GetUnscopedName(),
94
+ shape=(1,) + data_config['input_size'], mean=0.0, std=1.0)
95
+ workspace.RunNetOnce(model.param_init_net)
96
+ workspace.CreateNet(model.net, overwrite=True)
97
+
98
+ batch_time = AverageMeter()
99
+ top1 = AverageMeter()
100
+ top5 = AverageMeter()
101
+ end = time.time()
102
+ for i, (input, target) in enumerate(loader):
103
+ # run the net and return prediction
104
+ caffe2_in = input.data.numpy()
105
+ workspace.FeedBlob(input_blob, caffe2_in, device_opts)
106
+ workspace.RunNet(model.net, num_iter=1)
107
+ output = workspace.FetchBlob(output_blob)
108
+
109
+ # measure accuracy and record loss
110
+ prec1, prec5 = accuracy_np(output.data, target.numpy())
111
+ top1.update(prec1.item(), input.size(0))
112
+ top5.update(prec5.item(), input.size(0))
113
+
114
+ # measure elapsed time
115
+ batch_time.update(time.time() - end)
116
+ end = time.time()
117
+
118
+ if i % args.print_freq == 0:
119
+ print('Test: [{0}/{1}]\t'
120
+ 'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s, {ms_avg:.3f} ms/sample) \t'
121
+ 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
122
+ 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
123
+ i, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg,
124
+ ms_avg=100 * batch_time.avg / input.size(0), top1=top1, top5=top5))
125
+
126
+ print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format(
127
+ top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg))
128
+
129
+
130
+ def accuracy_np(output, target):
131
+ max_indices = np.argsort(output, axis=1)[:, ::-1]
132
+ top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean()
133
+ top1 = 100 * np.equal(max_indices[:, 0], target).mean()
134
+ return top1, top5
135
+
136
+
137
+ if __name__ == '__main__':
138
+ main()
annotator/normalbae/models/submodules/efficientnet_repo/data/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .dataset import Dataset
2
+ from .transforms import *
3
+ from .loader import create_loader
annotator/normalbae/models/submodules/efficientnet_repo/data/dataset.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Quick n simple image folder dataset
2
+
3
+ Copyright 2020 Ross Wightman
4
+ """
5
+ import torch.utils.data as data
6
+
7
+ import os
8
+ import re
9
+ import torch
10
+ from PIL import Image
11
+
12
+
13
+ IMG_EXTENSIONS = ['.png', '.jpg', '.jpeg']
14
+
15
+
16
+ def natural_key(string_):
17
+ """See http://www.codinghorror.com/blog/archives/001018.html"""
18
+ return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
19
+
20
+
21
+ def find_images_and_targets(folder, types=IMG_EXTENSIONS, class_to_idx=None, leaf_name_only=True, sort=True):
22
+ if class_to_idx is None:
23
+ class_to_idx = dict()
24
+ build_class_idx = True
25
+ else:
26
+ build_class_idx = False
27
+ labels = []
28
+ filenames = []
29
+ for root, subdirs, files in os.walk(folder, topdown=False):
30
+ rel_path = os.path.relpath(root, folder) if (root != folder) else ''
31
+ label = os.path.basename(rel_path) if leaf_name_only else rel_path.replace(os.path.sep, '_')
32
+ if build_class_idx and not subdirs:
33
+ class_to_idx[label] = None
34
+ for f in files:
35
+ base, ext = os.path.splitext(f)
36
+ if ext.lower() in types:
37
+ filenames.append(os.path.join(root, f))
38
+ labels.append(label)
39
+ if build_class_idx:
40
+ classes = sorted(class_to_idx.keys(), key=natural_key)
41
+ for idx, c in enumerate(classes):
42
+ class_to_idx[c] = idx
43
+ images_and_targets = zip(filenames, [class_to_idx[l] for l in labels])
44
+ if sort:
45
+ images_and_targets = sorted(images_and_targets, key=lambda k: natural_key(k[0]))
46
+ if build_class_idx:
47
+ return images_and_targets, classes, class_to_idx
48
+ else:
49
+ return images_and_targets
50
+
51
+
52
+ class Dataset(data.Dataset):
53
+
54
+ def __init__(
55
+ self,
56
+ root,
57
+ transform=None,
58
+ load_bytes=False):
59
+
60
+ imgs, _, _ = find_images_and_targets(root)
61
+ if len(imgs) == 0:
62
+ raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
63
+ "Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
64
+ self.root = root
65
+ self.imgs = imgs
66
+ self.transform = transform
67
+ self.load_bytes = load_bytes
68
+
69
+ def __getitem__(self, index):
70
+ path, target = self.imgs[index]
71
+ img = open(path, 'rb').read() if self.load_bytes else Image.open(path).convert('RGB')
72
+ if self.transform is not None:
73
+ img = self.transform(img)
74
+ if target is None:
75
+ target = torch.zeros(1).long()
76
+ return img, target
77
+
78
+ def __len__(self):
79
+ return len(self.imgs)
80
+
81
+ def filenames(self, indices=[], basename=False):
82
+ if indices:
83
+ if basename:
84
+ return [os.path.basename(self.imgs[i][0]) for i in indices]
85
+ else:
86
+ return [self.imgs[i][0] for i in indices]
87
+ else:
88
+ if basename:
89
+ return [os.path.basename(x[0]) for x in self.imgs]
90
+ else:
91
+ return [x[0] for x in self.imgs]
annotator/normalbae/models/submodules/efficientnet_repo/data/loader.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Fast Collate, CUDA Prefetcher
2
+
3
+ Prefetcher and Fast Collate inspired by NVIDIA APEX example at
4
+ https://github.com/NVIDIA/apex/commit/d5e2bb4bdeedd27b1dfaf5bb2b24d6c000dee9be#diff-cf86c282ff7fba81fad27a559379d5bf
5
+
6
+ Hacked together by / Copyright 2020 Ross Wightman
7
+ """
8
+ import torch
9
+ import torch.utils.data
10
+ from .transforms import *
11
+
12
+
13
+ def fast_collate(batch):
14
+ targets = torch.tensor([b[1] for b in batch], dtype=torch.int64)
15
+ batch_size = len(targets)
16
+ tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8)
17
+ for i in range(batch_size):
18
+ tensor[i] += torch.from_numpy(batch[i][0])
19
+
20
+ return tensor, targets
21
+
22
+
23
+ class PrefetchLoader:
24
+
25
+ def __init__(self,
26
+ loader,
27
+ mean=IMAGENET_DEFAULT_MEAN,
28
+ std=IMAGENET_DEFAULT_STD):
29
+ self.loader = loader
30
+ self.mean = torch.tensor([x * 255 for x in mean]).cuda().view(1, 3, 1, 1)
31
+ self.std = torch.tensor([x * 255 for x in std]).cuda().view(1, 3, 1, 1)
32
+
33
+ def __iter__(self):
34
+ stream = torch.cuda.Stream()
35
+ first = True
36
+
37
+ for next_input, next_target in self.loader:
38
+ with torch.cuda.stream(stream):
39
+ next_input = next_input.cuda(non_blocking=True)
40
+ next_target = next_target.cuda(non_blocking=True)
41
+ next_input = next_input.float().sub_(self.mean).div_(self.std)
42
+
43
+ if not first:
44
+ yield input, target
45
+ else:
46
+ first = False
47
+
48
+ torch.cuda.current_stream().wait_stream(stream)
49
+ input = next_input
50
+ target = next_target
51
+
52
+ yield input, target
53
+
54
+ def __len__(self):
55
+ return len(self.loader)
56
+
57
+ @property
58
+ def sampler(self):
59
+ return self.loader.sampler
60
+
61
+
62
+ def create_loader(
63
+ dataset,
64
+ input_size,
65
+ batch_size,
66
+ is_training=False,
67
+ use_prefetcher=True,
68
+ interpolation='bilinear',
69
+ mean=IMAGENET_DEFAULT_MEAN,
70
+ std=IMAGENET_DEFAULT_STD,
71
+ num_workers=1,
72
+ crop_pct=None,
73
+ tensorflow_preprocessing=False
74
+ ):
75
+ if isinstance(input_size, tuple):
76
+ img_size = input_size[-2:]
77
+ else:
78
+ img_size = input_size
79
+
80
+ if tensorflow_preprocessing and use_prefetcher:
81
+ from data.tf_preprocessing import TfPreprocessTransform
82
+ transform = TfPreprocessTransform(
83
+ is_training=is_training, size=img_size, interpolation=interpolation)
84
+ else:
85
+ transform = transforms_imagenet_eval(
86
+ img_size,
87
+ interpolation=interpolation,
88
+ use_prefetcher=use_prefetcher,
89
+ mean=mean,
90
+ std=std,
91
+ crop_pct=crop_pct)
92
+
93
+ dataset.transform = transform
94
+
95
+ loader = torch.utils.data.DataLoader(
96
+ dataset,
97
+ batch_size=batch_size,
98
+ shuffle=False,
99
+ num_workers=num_workers,
100
+ collate_fn=fast_collate if use_prefetcher else torch.utils.data.dataloader.default_collate,
101
+ )
102
+ if use_prefetcher:
103
+ loader = PrefetchLoader(
104
+ loader,
105
+ mean=mean,
106
+ std=std)
107
+
108
+ return loader
annotator/normalbae/models/submodules/efficientnet_repo/data/tf_preprocessing.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Tensorflow Preprocessing Adapter
2
+
3
+ Allows use of Tensorflow preprocessing pipeline in PyTorch Transform
4
+
5
+ Copyright of original Tensorflow code below.
6
+
7
+ Hacked together by / Copyright 2020 Ross Wightman
8
+ """
9
+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
10
+ #
11
+ # Licensed under the Apache License, Version 2.0 (the "License");
12
+ # you may not use this file except in compliance with the License.
13
+ # You may obtain a copy of the License at
14
+ #
15
+ # http://www.apache.org/licenses/LICENSE-2.0
16
+ #
17
+ # Unless required by applicable law or agreed to in writing, software
18
+ # distributed under the License is distributed on an "AS IS" BASIS,
19
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20
+ # See the License for the specific language governing permissions and
21
+ # limitations under the License.
22
+ # ==============================================================================
23
+ from __future__ import absolute_import
24
+ from __future__ import division
25
+ from __future__ import print_function
26
+
27
+ import tensorflow as tf
28
+ import numpy as np
29
+
30
+ IMAGE_SIZE = 224
31
+ CROP_PADDING = 32
32
+
33
+
34
+ def distorted_bounding_box_crop(image_bytes,
35
+ bbox,
36
+ min_object_covered=0.1,
37
+ aspect_ratio_range=(0.75, 1.33),
38
+ area_range=(0.05, 1.0),
39
+ max_attempts=100,
40
+ scope=None):
41
+ """Generates cropped_image using one of the bboxes randomly distorted.
42
+
43
+ See `tf.image.sample_distorted_bounding_box` for more documentation.
44
+
45
+ Args:
46
+ image_bytes: `Tensor` of binary image data.
47
+ bbox: `Tensor` of bounding boxes arranged `[1, num_boxes, coords]`
48
+ where each coordinate is [0, 1) and the coordinates are arranged
49
+ as `[ymin, xmin, ymax, xmax]`. If num_boxes is 0 then use the whole
50
+ image.
51
+ min_object_covered: An optional `float`. Defaults to `0.1`. The cropped
52
+ area of the image must contain at least this fraction of any bounding
53
+ box supplied.
54
+ aspect_ratio_range: An optional list of `float`s. The cropped area of the
55
+ image must have an aspect ratio = width / height within this range.
56
+ area_range: An optional list of `float`s. The cropped area of the image
57
+ must contain a fraction of the supplied image within in this range.
58
+ max_attempts: An optional `int`. Number of attempts at generating a cropped
59
+ region of the image of the specified constraints. After `max_attempts`
60
+ failures, return the entire image.
61
+ scope: Optional `str` for name scope.
62
+ Returns:
63
+ cropped image `Tensor`
64
+ """
65
+ with tf.name_scope(scope, 'distorted_bounding_box_crop', [image_bytes, bbox]):
66
+ shape = tf.image.extract_jpeg_shape(image_bytes)
67
+ sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
68
+ shape,
69
+ bounding_boxes=bbox,
70
+ min_object_covered=min_object_covered,
71
+ aspect_ratio_range=aspect_ratio_range,
72
+ area_range=area_range,
73
+ max_attempts=max_attempts,
74
+ use_image_if_no_bounding_boxes=True)
75
+ bbox_begin, bbox_size, _ = sample_distorted_bounding_box
76
+
77
+ # Crop the image to the specified bounding box.
78
+ offset_y, offset_x, _ = tf.unstack(bbox_begin)
79
+ target_height, target_width, _ = tf.unstack(bbox_size)
80
+ crop_window = tf.stack([offset_y, offset_x, target_height, target_width])
81
+ image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
82
+
83
+ return image
84
+
85
+
86
+ def _at_least_x_are_equal(a, b, x):
87
+ """At least `x` of `a` and `b` `Tensors` are equal."""
88
+ match = tf.equal(a, b)
89
+ match = tf.cast(match, tf.int32)
90
+ return tf.greater_equal(tf.reduce_sum(match), x)
91
+
92
+
93
+ def _decode_and_random_crop(image_bytes, image_size, resize_method):
94
+ """Make a random crop of image_size."""
95
+ bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
96
+ image = distorted_bounding_box_crop(
97
+ image_bytes,
98
+ bbox,
99
+ min_object_covered=0.1,
100
+ aspect_ratio_range=(3. / 4, 4. / 3.),
101
+ area_range=(0.08, 1.0),
102
+ max_attempts=10,
103
+ scope=None)
104
+ original_shape = tf.image.extract_jpeg_shape(image_bytes)
105
+ bad = _at_least_x_are_equal(original_shape, tf.shape(image), 3)
106
+
107
+ image = tf.cond(
108
+ bad,
109
+ lambda: _decode_and_center_crop(image_bytes, image_size),
110
+ lambda: tf.image.resize([image], [image_size, image_size], resize_method)[0])
111
+
112
+ return image
113
+
114
+
115
+ def _decode_and_center_crop(image_bytes, image_size, resize_method):
116
+ """Crops to center of image with padding then scales image_size."""
117
+ shape = tf.image.extract_jpeg_shape(image_bytes)
118
+ image_height = shape[0]
119
+ image_width = shape[1]
120
+
121
+ padded_center_crop_size = tf.cast(
122
+ ((image_size / (image_size + CROP_PADDING)) *
123
+ tf.cast(tf.minimum(image_height, image_width), tf.float32)),
124
+ tf.int32)
125
+
126
+ offset_height = ((image_height - padded_center_crop_size) + 1) // 2
127
+ offset_width = ((image_width - padded_center_crop_size) + 1) // 2
128
+ crop_window = tf.stack([offset_height, offset_width,
129
+ padded_center_crop_size, padded_center_crop_size])
130
+ image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
131
+ image = tf.image.resize([image], [image_size, image_size], resize_method)[0]
132
+
133
+ return image
134
+
135
+
136
+ def _flip(image):
137
+ """Random horizontal image flip."""
138
+ image = tf.image.random_flip_left_right(image)
139
+ return image
140
+
141
+
142
+ def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'):
143
+ """Preprocesses the given image for evaluation.
144
+
145
+ Args:
146
+ image_bytes: `Tensor` representing an image binary of arbitrary size.
147
+ use_bfloat16: `bool` for whether to use bfloat16.
148
+ image_size: image size.
149
+ interpolation: image interpolation method
150
+
151
+ Returns:
152
+ A preprocessed image `Tensor`.
153
+ """
154
+ resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR
155
+ image = _decode_and_random_crop(image_bytes, image_size, resize_method)
156
+ image = _flip(image)
157
+ image = tf.reshape(image, [image_size, image_size, 3])
158
+ image = tf.image.convert_image_dtype(
159
+ image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
160
+ return image
161
+
162
+
163
+ def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'):
164
+ """Preprocesses the given image for evaluation.
165
+
166
+ Args:
167
+ image_bytes: `Tensor` representing an image binary of arbitrary size.
168
+ use_bfloat16: `bool` for whether to use bfloat16.
169
+ image_size: image size.
170
+ interpolation: image interpolation method
171
+
172
+ Returns:
173
+ A preprocessed image `Tensor`.
174
+ """
175
+ resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR
176
+ image = _decode_and_center_crop(image_bytes, image_size, resize_method)
177
+ image = tf.reshape(image, [image_size, image_size, 3])
178
+ image = tf.image.convert_image_dtype(
179
+ image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
180
+ return image
181
+
182
+
183
+ def preprocess_image(image_bytes,
184
+ is_training=False,
185
+ use_bfloat16=False,
186
+ image_size=IMAGE_SIZE,
187
+ interpolation='bicubic'):
188
+ """Preprocesses the given image.
189
+
190
+ Args:
191
+ image_bytes: `Tensor` representing an image binary of arbitrary size.
192
+ is_training: `bool` for whether the preprocessing is for training.
193
+ use_bfloat16: `bool` for whether to use bfloat16.
194
+ image_size: image size.
195
+ interpolation: image interpolation method
196
+
197
+ Returns:
198
+ A preprocessed image `Tensor` with value range of [0, 255].
199
+ """
200
+ if is_training:
201
+ return preprocess_for_train(image_bytes, use_bfloat16, image_size, interpolation)
202
+ else:
203
+ return preprocess_for_eval(image_bytes, use_bfloat16, image_size, interpolation)
204
+
205
+
206
+ class TfPreprocessTransform:
207
+
208
+ def __init__(self, is_training=False, size=224, interpolation='bicubic'):
209
+ self.is_training = is_training
210
+ self.size = size[0] if isinstance(size, tuple) else size
211
+ self.interpolation = interpolation
212
+ self._image_bytes = None
213
+ self.process_image = self._build_tf_graph()
214
+ self.sess = None
215
+
216
+ def _build_tf_graph(self):
217
+ with tf.device('/cpu:0'):
218
+ self._image_bytes = tf.placeholder(
219
+ shape=[],
220
+ dtype=tf.string,
221
+ )
222
+ img = preprocess_image(
223
+ self._image_bytes, self.is_training, False, self.size, self.interpolation)
224
+ return img
225
+
226
+ def __call__(self, image_bytes):
227
+ if self.sess is None:
228
+ self.sess = tf.Session()
229
+ img = self.sess.run(self.process_image, feed_dict={self._image_bytes: image_bytes})
230
+ img = img.round().clip(0, 255).astype(np.uint8)
231
+ if img.ndim < 3:
232
+ img = np.expand_dims(img, axis=-1)
233
+ img = np.rollaxis(img, 2) # HWC to CHW
234
+ return img
annotator/normalbae/models/submodules/efficientnet_repo/data/transforms.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torchvision import transforms
3
+ from PIL import Image
4
+ import math
5
+ import numpy as np
6
+
7
+ DEFAULT_CROP_PCT = 0.875
8
+
9
+ IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
10
+ IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
11
+ IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5)
12
+ IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)
13
+ IMAGENET_DPN_MEAN = (124 / 255, 117 / 255, 104 / 255)
14
+ IMAGENET_DPN_STD = tuple([1 / (.0167 * 255)] * 3)
15
+
16
+
17
+ def resolve_data_config(model, args, default_cfg={}, verbose=True):
18
+ new_config = {}
19
+ default_cfg = default_cfg
20
+ if not default_cfg and model is not None and hasattr(model, 'default_cfg'):
21
+ default_cfg = model.default_cfg
22
+
23
+ # Resolve input/image size
24
+ # FIXME grayscale/chans arg to use different # channels?
25
+ in_chans = 3
26
+ input_size = (in_chans, 224, 224)
27
+ if args.img_size is not None:
28
+ # FIXME support passing img_size as tuple, non-square
29
+ assert isinstance(args.img_size, int)
30
+ input_size = (in_chans, args.img_size, args.img_size)
31
+ elif 'input_size' in default_cfg:
32
+ input_size = default_cfg['input_size']
33
+ new_config['input_size'] = input_size
34
+
35
+ # resolve interpolation method
36
+ new_config['interpolation'] = 'bicubic'
37
+ if args.interpolation:
38
+ new_config['interpolation'] = args.interpolation
39
+ elif 'interpolation' in default_cfg:
40
+ new_config['interpolation'] = default_cfg['interpolation']
41
+
42
+ # resolve dataset + model mean for normalization
43
+ new_config['mean'] = IMAGENET_DEFAULT_MEAN
44
+ if args.mean is not None:
45
+ mean = tuple(args.mean)
46
+ if len(mean) == 1:
47
+ mean = tuple(list(mean) * in_chans)
48
+ else:
49
+ assert len(mean) == in_chans
50
+ new_config['mean'] = mean
51
+ elif 'mean' in default_cfg:
52
+ new_config['mean'] = default_cfg['mean']
53
+
54
+ # resolve dataset + model std deviation for normalization
55
+ new_config['std'] = IMAGENET_DEFAULT_STD
56
+ if args.std is not None:
57
+ std = tuple(args.std)
58
+ if len(std) == 1:
59
+ std = tuple(list(std) * in_chans)
60
+ else:
61
+ assert len(std) == in_chans
62
+ new_config['std'] = std
63
+ elif 'std' in default_cfg:
64
+ new_config['std'] = default_cfg['std']
65
+
66
+ # resolve default crop percentage
67
+ new_config['crop_pct'] = DEFAULT_CROP_PCT
68
+ if args.crop_pct is not None:
69
+ new_config['crop_pct'] = args.crop_pct
70
+ elif 'crop_pct' in default_cfg:
71
+ new_config['crop_pct'] = default_cfg['crop_pct']
72
+
73
+ if verbose:
74
+ print('Data processing configuration for current model + dataset:')
75
+ for n, v in new_config.items():
76
+ print('\t%s: %s' % (n, str(v)))
77
+
78
+ return new_config
79
+
80
+
81
+ class ToNumpy:
82
+
83
+ def __call__(self, pil_img):
84
+ np_img = np.array(pil_img, dtype=np.uint8)
85
+ if np_img.ndim < 3:
86
+ np_img = np.expand_dims(np_img, axis=-1)
87
+ np_img = np.rollaxis(np_img, 2) # HWC to CHW
88
+ return np_img
89
+
90
+
91
+ class ToTensor:
92
+
93
+ def __init__(self, dtype=torch.float32):
94
+ self.dtype = dtype
95
+
96
+ def __call__(self, pil_img):
97
+ np_img = np.array(pil_img, dtype=np.uint8)
98
+ if np_img.ndim < 3:
99
+ np_img = np.expand_dims(np_img, axis=-1)
100
+ np_img = np.rollaxis(np_img, 2) # HWC to CHW
101
+ return torch.from_numpy(np_img).to(dtype=self.dtype)
102
+
103
+
104
+ def _pil_interp(method):
105
+ if method == 'bicubic':
106
+ return Image.BICUBIC
107
+ elif method == 'lanczos':
108
+ return Image.LANCZOS
109
+ elif method == 'hamming':
110
+ return Image.HAMMING
111
+ else:
112
+ # default bilinear, do we want to allow nearest?
113
+ return Image.BILINEAR
114
+
115
+
116
+ def transforms_imagenet_eval(
117
+ img_size=224,
118
+ crop_pct=None,
119
+ interpolation='bilinear',
120
+ use_prefetcher=False,
121
+ mean=IMAGENET_DEFAULT_MEAN,
122
+ std=IMAGENET_DEFAULT_STD):
123
+ crop_pct = crop_pct or DEFAULT_CROP_PCT
124
+
125
+ if isinstance(img_size, tuple):
126
+ assert len(img_size) == 2
127
+ if img_size[-1] == img_size[-2]:
128
+ # fall-back to older behaviour so Resize scales to shortest edge if target is square
129
+ scale_size = int(math.floor(img_size[0] / crop_pct))
130
+ else:
131
+ scale_size = tuple([int(x / crop_pct) for x in img_size])
132
+ else:
133
+ scale_size = int(math.floor(img_size / crop_pct))
134
+
135
+ tfl = [
136
+ transforms.Resize(scale_size, _pil_interp(interpolation)),
137
+ transforms.CenterCrop(img_size),
138
+ ]
139
+ if use_prefetcher:
140
+ # prefetcher and collate will handle tensor conversion and norm
141
+ tfl += [ToNumpy()]
142
+ else:
143
+ tfl += [
144
+ transforms.ToTensor(),
145
+ transforms.Normalize(
146
+ mean=torch.tensor(mean),
147
+ std=torch.tensor(std))
148
+ ]
149
+
150
+ return transforms.Compose(tfl)
annotator/normalbae/models/submodules/efficientnet_repo/geffnet/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .gen_efficientnet import *
2
+ from .mobilenetv3 import *
3
+ from .model_factory import create_model
4
+ from .config import is_exportable, is_scriptable, set_exportable, set_scriptable
5
+ from .activations import *
annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/__init__.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from geffnet import config
2
+ from geffnet.activations.activations_me import *
3
+ from geffnet.activations.activations_jit import *
4
+ from geffnet.activations.activations import *
5
+ import torch
6
+
7
+ _has_silu = 'silu' in dir(torch.nn.functional)
8
+
9
+ _ACT_FN_DEFAULT = dict(
10
+ silu=F.silu if _has_silu else swish,
11
+ swish=F.silu if _has_silu else swish,
12
+ mish=mish,
13
+ relu=F.relu,
14
+ relu6=F.relu6,
15
+ sigmoid=sigmoid,
16
+ tanh=tanh,
17
+ hard_sigmoid=hard_sigmoid,
18
+ hard_swish=hard_swish,
19
+ )
20
+
21
+ _ACT_FN_JIT = dict(
22
+ silu=F.silu if _has_silu else swish_jit,
23
+ swish=F.silu if _has_silu else swish_jit,
24
+ mish=mish_jit,
25
+ )
26
+
27
+ _ACT_FN_ME = dict(
28
+ silu=F.silu if _has_silu else swish_me,
29
+ swish=F.silu if _has_silu else swish_me,
30
+ mish=mish_me,
31
+ hard_swish=hard_swish_me,
32
+ hard_sigmoid_jit=hard_sigmoid_me,
33
+ )
34
+
35
+ _ACT_LAYER_DEFAULT = dict(
36
+ silu=nn.SiLU if _has_silu else Swish,
37
+ swish=nn.SiLU if _has_silu else Swish,
38
+ mish=Mish,
39
+ relu=nn.ReLU,
40
+ relu6=nn.ReLU6,
41
+ sigmoid=Sigmoid,
42
+ tanh=Tanh,
43
+ hard_sigmoid=HardSigmoid,
44
+ hard_swish=HardSwish,
45
+ )
46
+
47
+ _ACT_LAYER_JIT = dict(
48
+ silu=nn.SiLU if _has_silu else SwishJit,
49
+ swish=nn.SiLU if _has_silu else SwishJit,
50
+ mish=MishJit,
51
+ )
52
+
53
+ _ACT_LAYER_ME = dict(
54
+ silu=nn.SiLU if _has_silu else SwishMe,
55
+ swish=nn.SiLU if _has_silu else SwishMe,
56
+ mish=MishMe,
57
+ hard_swish=HardSwishMe,
58
+ hard_sigmoid=HardSigmoidMe
59
+ )
60
+
61
+ _OVERRIDE_FN = dict()
62
+ _OVERRIDE_LAYER = dict()
63
+
64
+
65
+ def add_override_act_fn(name, fn):
66
+ global _OVERRIDE_FN
67
+ _OVERRIDE_FN[name] = fn
68
+
69
+
70
+ def update_override_act_fn(overrides):
71
+ assert isinstance(overrides, dict)
72
+ global _OVERRIDE_FN
73
+ _OVERRIDE_FN.update(overrides)
74
+
75
+
76
+ def clear_override_act_fn():
77
+ global _OVERRIDE_FN
78
+ _OVERRIDE_FN = dict()
79
+
80
+
81
+ def add_override_act_layer(name, fn):
82
+ _OVERRIDE_LAYER[name] = fn
83
+
84
+
85
+ def update_override_act_layer(overrides):
86
+ assert isinstance(overrides, dict)
87
+ global _OVERRIDE_LAYER
88
+ _OVERRIDE_LAYER.update(overrides)
89
+
90
+
91
+ def clear_override_act_layer():
92
+ global _OVERRIDE_LAYER
93
+ _OVERRIDE_LAYER = dict()
94
+
95
+
96
+ def get_act_fn(name='relu'):
97
+ """ Activation Function Factory
98
+ Fetching activation fns by name with this function allows export or torch script friendly
99
+ functions to be returned dynamically based on current config.
100
+ """
101
+ if name in _OVERRIDE_FN:
102
+ return _OVERRIDE_FN[name]
103
+ use_me = not (config.is_exportable() or config.is_scriptable() or config.is_no_jit())
104
+ if use_me and name in _ACT_FN_ME:
105
+ # If not exporting or scripting the model, first look for a memory optimized version
106
+ # activation with custom autograd, then fallback to jit scripted, then a Python or Torch builtin
107
+ return _ACT_FN_ME[name]
108
+ if config.is_exportable() and name in ('silu', 'swish'):
109
+ # FIXME PyTorch SiLU doesn't ONNX export, this is a temp hack
110
+ return swish
111
+ use_jit = not (config.is_exportable() or config.is_no_jit())
112
+ # NOTE: export tracing should work with jit scripted components, but I keep running into issues
113
+ if use_jit and name in _ACT_FN_JIT: # jit scripted models should be okay for export/scripting
114
+ return _ACT_FN_JIT[name]
115
+ return _ACT_FN_DEFAULT[name]
116
+
117
+
118
+ def get_act_layer(name='relu'):
119
+ """ Activation Layer Factory
120
+ Fetching activation layers by name with this function allows export or torch script friendly
121
+ functions to be returned dynamically based on current config.
122
+ """
123
+ if name in _OVERRIDE_LAYER:
124
+ return _OVERRIDE_LAYER[name]
125
+ use_me = not (config.is_exportable() or config.is_scriptable() or config.is_no_jit())
126
+ if use_me and name in _ACT_LAYER_ME:
127
+ return _ACT_LAYER_ME[name]
128
+ if config.is_exportable() and name in ('silu', 'swish'):
129
+ # FIXME PyTorch SiLU doesn't ONNX export, this is a temp hack
130
+ return Swish
131
+ use_jit = not (config.is_exportable() or config.is_no_jit())
132
+ # NOTE: export tracing should work with jit scripted components, but I keep running into issues
133
+ if use_jit and name in _ACT_FN_JIT: # jit scripted models should be okay for export/scripting
134
+ return _ACT_LAYER_JIT[name]
135
+ return _ACT_LAYER_DEFAULT[name]
136
+
137
+
annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Activations
2
+
3
+ A collection of activations fn and modules with a common interface so that they can
4
+ easily be swapped. All have an `inplace` arg even if not used.
5
+
6
+ Copyright 2020 Ross Wightman
7
+ """
8
+ from torch import nn as nn
9
+ from torch.nn import functional as F
10
+
11
+
12
+ def swish(x, inplace: bool = False):
13
+ """Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3)
14
+ and also as Swish (https://arxiv.org/abs/1710.05941).
15
+
16
+ TODO Rename to SiLU with addition to PyTorch
17
+ """
18
+ return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid())
19
+
20
+
21
+ class Swish(nn.Module):
22
+ def __init__(self, inplace: bool = False):
23
+ super(Swish, self).__init__()
24
+ self.inplace = inplace
25
+
26
+ def forward(self, x):
27
+ return swish(x, self.inplace)
28
+
29
+
30
+ def mish(x, inplace: bool = False):
31
+ """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
32
+ """
33
+ return x.mul(F.softplus(x).tanh())
34
+
35
+
36
+ class Mish(nn.Module):
37
+ def __init__(self, inplace: bool = False):
38
+ super(Mish, self).__init__()
39
+ self.inplace = inplace
40
+
41
+ def forward(self, x):
42
+ return mish(x, self.inplace)
43
+
44
+
45
+ def sigmoid(x, inplace: bool = False):
46
+ return x.sigmoid_() if inplace else x.sigmoid()
47
+
48
+
49
+ # PyTorch has this, but not with a consistent inplace argmument interface
50
+ class Sigmoid(nn.Module):
51
+ def __init__(self, inplace: bool = False):
52
+ super(Sigmoid, self).__init__()
53
+ self.inplace = inplace
54
+
55
+ def forward(self, x):
56
+ return x.sigmoid_() if self.inplace else x.sigmoid()
57
+
58
+
59
+ def tanh(x, inplace: bool = False):
60
+ return x.tanh_() if inplace else x.tanh()
61
+
62
+
63
+ # PyTorch has this, but not with a consistent inplace argmument interface
64
+ class Tanh(nn.Module):
65
+ def __init__(self, inplace: bool = False):
66
+ super(Tanh, self).__init__()
67
+ self.inplace = inplace
68
+
69
+ def forward(self, x):
70
+ return x.tanh_() if self.inplace else x.tanh()
71
+
72
+
73
+ def hard_swish(x, inplace: bool = False):
74
+ inner = F.relu6(x + 3.).div_(6.)
75
+ return x.mul_(inner) if inplace else x.mul(inner)
76
+
77
+
78
+ class HardSwish(nn.Module):
79
+ def __init__(self, inplace: bool = False):
80
+ super(HardSwish, self).__init__()
81
+ self.inplace = inplace
82
+
83
+ def forward(self, x):
84
+ return hard_swish(x, self.inplace)
85
+
86
+
87
+ def hard_sigmoid(x, inplace: bool = False):
88
+ if inplace:
89
+ return x.add_(3.).clamp_(0., 6.).div_(6.)
90
+ else:
91
+ return F.relu6(x + 3.) / 6.
92
+
93
+
94
+ class HardSigmoid(nn.Module):
95
+ def __init__(self, inplace: bool = False):
96
+ super(HardSigmoid, self).__init__()
97
+ self.inplace = inplace
98
+
99
+ def forward(self, x):
100
+ return hard_sigmoid(x, self.inplace)
101
+
102
+
annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations_jit.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Activations (jit)
2
+
3
+ A collection of jit-scripted activations fn and modules with a common interface so that they can
4
+ easily be swapped. All have an `inplace` arg even if not used.
5
+
6
+ All jit scripted activations are lacking in-place variations on purpose, scripted kernel fusion does not
7
+ currently work across in-place op boundaries, thus performance is equal to or less than the non-scripted
8
+ versions if they contain in-place ops.
9
+
10
+ Copyright 2020 Ross Wightman
11
+ """
12
+
13
+ import torch
14
+ from torch import nn as nn
15
+ from torch.nn import functional as F
16
+
17
+ __all__ = ['swish_jit', 'SwishJit', 'mish_jit', 'MishJit',
18
+ 'hard_sigmoid_jit', 'HardSigmoidJit', 'hard_swish_jit', 'HardSwishJit']
19
+
20
+
21
+ @torch.jit.script
22
+ def swish_jit(x, inplace: bool = False):
23
+ """Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3)
24
+ and also as Swish (https://arxiv.org/abs/1710.05941).
25
+
26
+ TODO Rename to SiLU with addition to PyTorch
27
+ """
28
+ return x.mul(x.sigmoid())
29
+
30
+
31
+ @torch.jit.script
32
+ def mish_jit(x, _inplace: bool = False):
33
+ """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
34
+ """
35
+ return x.mul(F.softplus(x).tanh())
36
+
37
+
38
+ class SwishJit(nn.Module):
39
+ def __init__(self, inplace: bool = False):
40
+ super(SwishJit, self).__init__()
41
+
42
+ def forward(self, x):
43
+ return swish_jit(x)
44
+
45
+
46
+ class MishJit(nn.Module):
47
+ def __init__(self, inplace: bool = False):
48
+ super(MishJit, self).__init__()
49
+
50
+ def forward(self, x):
51
+ return mish_jit(x)
52
+
53
+
54
+ @torch.jit.script
55
+ def hard_sigmoid_jit(x, inplace: bool = False):
56
+ # return F.relu6(x + 3.) / 6.
57
+ return (x + 3).clamp(min=0, max=6).div(6.) # clamp seems ever so slightly faster?
58
+
59
+
60
+ class HardSigmoidJit(nn.Module):
61
+ def __init__(self, inplace: bool = False):
62
+ super(HardSigmoidJit, self).__init__()
63
+
64
+ def forward(self, x):
65
+ return hard_sigmoid_jit(x)
66
+
67
+
68
+ @torch.jit.script
69
+ def hard_swish_jit(x, inplace: bool = False):
70
+ # return x * (F.relu6(x + 3.) / 6)
71
+ return x * (x + 3).clamp(min=0, max=6).div(6.) # clamp seems ever so slightly faster?
72
+
73
+
74
+ class HardSwishJit(nn.Module):
75
+ def __init__(self, inplace: bool = False):
76
+ super(HardSwishJit, self).__init__()
77
+
78
+ def forward(self, x):
79
+ return hard_swish_jit(x)