# Pidinet # https://github.com/hellozhuo/pidinet import os import torch import numpy as np from einops import rearrange from annotator.pidinet.model import pidinet from annotator.util import annotator_ckpts_path, safe_step class PidiNetDetector: def __init__(self): remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/table5_pidinet.pth" modelpath = os.path.join(annotator_ckpts_path, "table5_pidinet.pth") if not os.path.exists(modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) self.netNetwork = pidinet() self.netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(modelpath)['state_dict'].items()}) self.netNetwork = self.netNetwork.cuda() self.netNetwork.eval() def __call__(self, input_image, safe=False): assert input_image.ndim == 3 input_image = input_image[:, :, ::-1].copy() with torch.no_grad(): image_pidi = torch.from_numpy(input_image).float().cuda() image_pidi = image_pidi / 255.0 image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w') edge = self.netNetwork(image_pidi)[-1] edge = edge.cpu().numpy() if safe: edge = safe_step(edge) edge = (edge * 255.0).clip(0, 255).astype(np.uint8) return edge[0][0]