# Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation # https://github.com/baegwangbin/surface_normal_uncertainty import os import types import torch import numpy as np from einops import rearrange from .models.NNET import NNET from .utils import utils from annotator.util import annotator_ckpts_path import torchvision.transforms as transforms class NormalBaeDetector: def __init__(self): remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/scannet.pt" modelpath = os.path.join(annotator_ckpts_path, "scannet.pt") if not os.path.exists(modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) args = types.SimpleNamespace() args.mode = 'client' args.architecture = 'BN' args.pretrained = 'scannet' args.sampling_ratio = 0.4 args.importance_ratio = 0.7 model = NNET(args) model = utils.load_checkpoint(modelpath, model) model = model.cuda() model.eval() self.model = model self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def __call__(self, input_image): assert input_image.ndim == 3 image_normal = input_image with torch.no_grad(): image_normal = torch.from_numpy(image_normal).float().cuda() image_normal = image_normal / 255.0 image_normal = rearrange(image_normal, 'h w c -> 1 c h w') image_normal = self.norm(image_normal) normal = self.model(image_normal) normal = normal[0][-1][:, :3] # d = torch.sum(normal ** 2.0, dim=1, keepdim=True) ** 0.5 # d = torch.maximum(d, torch.ones_like(d) * 1e-5) # normal /= d normal = ((normal + 1) * 0.5).clip(0, 1) normal = rearrange(normal[0], 'c h w -> h w c').cpu().numpy() normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8) return normal_image