# Copyright (c) Facebook, Inc. and its affiliates. import logging from typing import List, Optional, Tuple import torch from fvcore.nn import sigmoid_focal_loss_jit from torch import nn from torch.nn import functional as F from annotator.oneformer.detectron2.layers import ShapeSpec, batched_nms from annotator.oneformer.detectron2.structures import Boxes, ImageList, Instances, pairwise_point_box_distance from annotator.oneformer.detectron2.utils.events import get_event_storage from ..anchor_generator import DefaultAnchorGenerator from ..backbone import Backbone from ..box_regression import Box2BoxTransformLinear, _dense_box_regression_loss from .dense_detector import DenseDetector from .retinanet import RetinaNetHead __all__ = ["FCOS"] logger = logging.getLogger(__name__) class FCOS(DenseDetector): """ Implement FCOS in :paper:`fcos`. """ def __init__( self, *, backbone: Backbone, head: nn.Module, head_in_features: Optional[List[str]] = None, box2box_transform=None, num_classes, center_sampling_radius: float = 1.5, focal_loss_alpha=0.25, focal_loss_gamma=2.0, test_score_thresh=0.2, test_topk_candidates=1000, test_nms_thresh=0.6, max_detections_per_image=100, pixel_mean, pixel_std, ): """ Args: center_sampling_radius: radius of the "center" of a groundtruth box, within which all anchor points are labeled positive. Other arguments mean the same as in :class:`RetinaNet`. """ super().__init__( backbone, head, head_in_features, pixel_mean=pixel_mean, pixel_std=pixel_std ) self.num_classes = num_classes # FCOS uses one anchor point per location. # We represent the anchor point by a box whose size equals the anchor stride. feature_shapes = backbone.output_shape() fpn_strides = [feature_shapes[k].stride for k in self.head_in_features] self.anchor_generator = DefaultAnchorGenerator( sizes=[[k] for k in fpn_strides], aspect_ratios=[1.0], strides=fpn_strides ) # FCOS parameterizes box regression by a linear transform, # where predictions are normalized by anchor stride (equal to anchor size). if box2box_transform is None: box2box_transform = Box2BoxTransformLinear(normalize_by_size=True) self.box2box_transform = box2box_transform self.center_sampling_radius = float(center_sampling_radius) # Loss parameters: self.focal_loss_alpha = focal_loss_alpha self.focal_loss_gamma = focal_loss_gamma # Inference parameters: self.test_score_thresh = test_score_thresh self.test_topk_candidates = test_topk_candidates self.test_nms_thresh = test_nms_thresh self.max_detections_per_image = max_detections_per_image def forward_training(self, images, features, predictions, gt_instances): # Transpose the Hi*Wi*A dimension to the middle: pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions( predictions, [self.num_classes, 4, 1] ) anchors = self.anchor_generator(features) gt_labels, gt_boxes = self.label_anchors(anchors, gt_instances) return self.losses( anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness ) @torch.no_grad() def _match_anchors(self, gt_boxes: Boxes, anchors: List[Boxes]): """ Match ground-truth boxes to a set of multi-level anchors. Args: gt_boxes: Ground-truth boxes from instances of an image. anchors: List of anchors for each feature map (of different scales). Returns: torch.Tensor A tensor of shape `(M, R)`, given `M` ground-truth boxes and total `R` anchor points from all feature levels, indicating the quality of match between m-th box and r-th anchor. Higher value indicates better match. """ # Naming convention: (M = ground-truth boxes, R = anchor points) # Anchor points are represented as square boxes of size = stride. num_anchors_per_level = [len(x) for x in anchors] anchors = Boxes.cat(anchors) # (R, 4) anchor_centers = anchors.get_centers() # (R, 2) anchor_sizes = anchors.tensor[:, 2] - anchors.tensor[:, 0] # (R, ) lower_bound = anchor_sizes * 4 lower_bound[: num_anchors_per_level[0]] = 0 upper_bound = anchor_sizes * 8 upper_bound[-num_anchors_per_level[-1] :] = float("inf") gt_centers = gt_boxes.get_centers() # FCOS with center sampling: anchor point must be close enough to # ground-truth box center. center_dists = (anchor_centers[None, :, :] - gt_centers[:, None, :]).abs_() sampling_regions = self.center_sampling_radius * anchor_sizes[None, :] match_quality_matrix = center_dists.max(dim=2).values < sampling_regions pairwise_dist = pairwise_point_box_distance(anchor_centers, gt_boxes) pairwise_dist = pairwise_dist.permute(1, 0, 2) # (M, R, 4) # The original FCOS anchor matching rule: anchor point must be inside GT. match_quality_matrix &= pairwise_dist.min(dim=2).values > 0 # Multilevel anchor matching in FCOS: each anchor is only responsible # for certain scale range. pairwise_dist = pairwise_dist.max(dim=2).values match_quality_matrix &= (pairwise_dist > lower_bound[None, :]) & ( pairwise_dist < upper_bound[None, :] ) # Match the GT box with minimum area, if there are multiple GT matches. gt_areas = gt_boxes.area() # (M, ) match_quality_matrix = match_quality_matrix.to(torch.float32) match_quality_matrix *= 1e8 - gt_areas[:, None] return match_quality_matrix # (M, R) @torch.no_grad() def label_anchors(self, anchors: List[Boxes], gt_instances: List[Instances]): """ Same interface as :meth:`RetinaNet.label_anchors`, but implemented with FCOS anchor matching rule. Unlike RetinaNet, there are no ignored anchors. """ gt_labels, matched_gt_boxes = [], [] for inst in gt_instances: if len(inst) > 0: match_quality_matrix = self._match_anchors(inst.gt_boxes, anchors) # Find matched ground-truth box per anchor. Un-matched anchors are # assigned -1. This is equivalent to using an anchor matcher as used # in R-CNN/RetinaNet: `Matcher(thresholds=[1e-5], labels=[0, 1])` match_quality, matched_idxs = match_quality_matrix.max(dim=0) matched_idxs[match_quality < 1e-5] = -1 matched_gt_boxes_i = inst.gt_boxes.tensor[matched_idxs.clip(min=0)] gt_labels_i = inst.gt_classes[matched_idxs.clip(min=0)] # Anchors with matched_idxs = -1 are labeled background. gt_labels_i[matched_idxs < 0] = self.num_classes else: matched_gt_boxes_i = torch.zeros_like(Boxes.cat(anchors).tensor) gt_labels_i = torch.full( (len(matched_gt_boxes_i),), fill_value=self.num_classes, dtype=torch.long, device=matched_gt_boxes_i.device, ) gt_labels.append(gt_labels_i) matched_gt_boxes.append(matched_gt_boxes_i) return gt_labels, matched_gt_boxes def losses( self, anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness ): """ This method is almost identical to :meth:`RetinaNet.losses`, with an extra "loss_centerness" in the returned dict. """ num_images = len(gt_labels) gt_labels = torch.stack(gt_labels) # (M, R) pos_mask = (gt_labels >= 0) & (gt_labels != self.num_classes) num_pos_anchors = pos_mask.sum().item() get_event_storage().put_scalar("num_pos_anchors", num_pos_anchors / num_images) normalizer = self._ema_update("loss_normalizer", max(num_pos_anchors, 1), 300) # classification and regression loss gt_labels_target = F.one_hot(gt_labels, num_classes=self.num_classes + 1)[ :, :, :-1 ] # no loss for the last (background) class loss_cls = sigmoid_focal_loss_jit( torch.cat(pred_logits, dim=1), gt_labels_target.to(pred_logits[0].dtype), alpha=self.focal_loss_alpha, gamma=self.focal_loss_gamma, reduction="sum", ) loss_box_reg = _dense_box_regression_loss( anchors, self.box2box_transform, pred_anchor_deltas, gt_boxes, pos_mask, box_reg_loss_type="giou", ) ctrness_targets = self.compute_ctrness_targets(anchors, gt_boxes) # (M, R) pred_centerness = torch.cat(pred_centerness, dim=1).squeeze(dim=2) # (M, R) ctrness_loss = F.binary_cross_entropy_with_logits( pred_centerness[pos_mask], ctrness_targets[pos_mask], reduction="sum" ) return { "loss_fcos_cls": loss_cls / normalizer, "loss_fcos_loc": loss_box_reg / normalizer, "loss_fcos_ctr": ctrness_loss / normalizer, } def compute_ctrness_targets(self, anchors: List[Boxes], gt_boxes: List[torch.Tensor]): anchors = Boxes.cat(anchors).tensor # Rx4 reg_targets = [self.box2box_transform.get_deltas(anchors, m) for m in gt_boxes] reg_targets = torch.stack(reg_targets, dim=0) # NxRx4 if len(reg_targets) == 0: return reg_targets.new_zeros(len(reg_targets)) left_right = reg_targets[:, :, [0, 2]] top_bottom = reg_targets[:, :, [1, 3]] ctrness = (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * ( top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0] ) return torch.sqrt(ctrness) def forward_inference( self, images: ImageList, features: List[torch.Tensor], predictions: List[List[torch.Tensor]], ): pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions( predictions, [self.num_classes, 4, 1] ) anchors = self.anchor_generator(features) results: List[Instances] = [] for img_idx, image_size in enumerate(images.image_sizes): scores_per_image = [ # Multiply and sqrt centerness & classification scores # (See eqn. 4 in https://arxiv.org/abs/2006.09214) torch.sqrt(x[img_idx].sigmoid_() * y[img_idx].sigmoid_()) for x, y in zip(pred_logits, pred_centerness) ] deltas_per_image = [x[img_idx] for x in pred_anchor_deltas] results_per_image = self.inference_single_image( anchors, scores_per_image, deltas_per_image, image_size ) results.append(results_per_image) return results def inference_single_image( self, anchors: List[Boxes], box_cls: List[torch.Tensor], box_delta: List[torch.Tensor], image_size: Tuple[int, int], ): """ Identical to :meth:`RetinaNet.inference_single_image. """ pred = self._decode_multi_level_predictions( anchors, box_cls, box_delta, self.test_score_thresh, self.test_topk_candidates, image_size, ) keep = batched_nms( pred.pred_boxes.tensor, pred.scores, pred.pred_classes, self.test_nms_thresh ) return pred[keep[: self.max_detections_per_image]] class FCOSHead(RetinaNetHead): """ The head used in :paper:`fcos`. It adds an additional centerness prediction branch on top of :class:`RetinaNetHead`. """ def __init__(self, *, input_shape: List[ShapeSpec], conv_dims: List[int], **kwargs): super().__init__(input_shape=input_shape, conv_dims=conv_dims, num_anchors=1, **kwargs) # Unlike original FCOS, we do not add an additional learnable scale layer # because it's found to have no benefits after normalizing regression targets by stride. self._num_features = len(input_shape) self.ctrness = nn.Conv2d(conv_dims[-1], 1, kernel_size=3, stride=1, padding=1) torch.nn.init.normal_(self.ctrness.weight, std=0.01) torch.nn.init.constant_(self.ctrness.bias, 0) def forward(self, features): assert len(features) == self._num_features logits = [] bbox_reg = [] ctrness = [] for feature in features: logits.append(self.cls_score(self.cls_subnet(feature))) bbox_feature = self.bbox_subnet(feature) bbox_reg.append(self.bbox_pred(bbox_feature)) ctrness.append(self.ctrness(bbox_feature)) return logits, bbox_reg, ctrness