Spaces:
Sleeping
Sleeping
File size: 2,909 Bytes
823ded0 6feb7ec 3b7ef21 6feb7ec f13a3ca a78f83f c12ca9b e403126 a89484e c68cde2 f27514f a89484e ba60bd9 a89484e b9b4dd3 c12ca9b a89484e ba60bd9 0314451 ba60bd9 a89484e 0314451 c68cde2 ba60bd9 a89484e c68cde2 562e8c4 c12ca9b 8212ea2 670eaf6 8212ea2 9e57aa8 8212ea2 f27514f b9b4dd3 f27514f 77603ce a89484e 8212ea2 570d8c2 ba60bd9 c12ca9b f27514f c68cde2 570d8c2 a89484e 570d8c2 c68cde2 e403126 c12ca9b e403126 c68cde2 ba60bd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import os
import subprocess
# Function to install a package if it is not already installed
def install(package):
subprocess.check_call([os.sys.executable, "-m", "pip", "install", package])
# Ensure the necessary packages are installed
install("transformers")
install("torch")
install("pandas")
install("gradio")
install("openpyxl") # Added installation for openpyxl
import pandas as pd
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import torch
# Load the model and tokenizer from Hugging Face
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
# Load the dataset containing PEC numbers and names
def load_dataset(file_path='PEC_Numbers_and_Names.xlsx'):
if os.path.exists(file_path):
df = pd.read_excel(file_path)
print("File loaded successfully.")
print(df.head()) # Print first few rows for debugging
else:
raise FileNotFoundError(f"File not found: {file_path}")
return df
# Function to get the name based on the PEC number
def get_name(pec_number, df):
df['PEC No.'] = df['PEC No.'].str.strip().str.upper()
pec_number = pec_number.strip().upper()
print(f"Searching for PEC Number: {pec_number}") # Debugging output
result = df[df['PEC No.'] == pec_number]
if not result.empty:
print(f"Found Name: {result.iloc[0]['Name']}") # Debugging output
return result.iloc[0]['Name']
else:
print("PEC Number not is found.") # Debugging output
return "PEC Number not is found."
# Function to check if the PEC number is attached
def check_pec_number(pec_number, df):
df['PEC No.'] = df['PEC No.'].str.strip().str.upper()
pec_number = pec_number.strip().upper()
if pec_number in df['PEC No.'].values:
return "Your PEC Number is NOT Attached."
else:
return "Your PEC Number is Not Attached."
# Combine the functions to create a prediction
def predict(pec_number):
try:
# Load the dataset from the root directory
df = load_dataset()
name = get_name(pec_number, df)
pec_status = check_pec_number(pec_number, df)
return f"Your Name Is: {name}\n{pec_status}" # Return name and PEC status
except Exception as e:
print(f"An error occurred: {e}")
return f"Error: {e}"
# Build the Gradio interface without the file upload option
iface = gr.Interface(
fn=predict,
inputs=gr.Textbox(lines=1, label="**PEC Number**"), # Bold label for PEC Number
outputs=gr.Textbox(label="Your Name Is:"), # Custom label for the output
title="PEC Number to Name Lookup",
description="Enter a PEC number , Your PEC number is attached with Firm or not"
)
# Run the Gradio interface
if __name__ == "__main__":
iface.launch()
|