File size: 6,000 Bytes
06fdab0 67a3b3a 06fdab0 67a3b3a 06fdab0 67a3b3a 06fdab0 67a3b3a 06fdab0 67a3b3a 06fdab0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import random
import time
import os
import requests
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
MAX_QUESTIONS = 10 # Maximum number of questions to support
######
# Fix the models
#
MODELS = [
"anthropic/claude-3-opus-20240229",
"anthropic/claude-3-sonnet-20240229",
"google/gemini-pro",
"mistralai/mistral-medium", # Updated from mistral-7b-instruct
"anthropic/claude-2.1",
"openai/gpt-4-turbo-preview",
"openai/gpt-3.5-turbo"
]
#
######
# Get configuration from environment variables
OPENROUTER_API_KEY = os.getenv('OPENROUTER_API_KEY')
OPENROUTER_BASE_URL = os.getenv('OPENROUTER_BASE_URL')
if not OPENROUTER_API_KEY or not OPENROUTER_BASE_URL:
raise ValueError("Missing required environment variables. Please check your .env file.")
def get_response(question, model):
"""Get response from OpenRouter API for the given question and model."""
headers = {
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "http://localhost:7860", # Replace with your actual domain
"Content-Type": "application/json"
}
data = {
"model": model,
"messages": [
{"role": "user", "content": question}
]
}
try:
response = requests.post(
OPENROUTER_BASE_URL,
headers=headers,
json=data,
timeout=30 # 30 second timeout
)
response.raise_for_status()
result = response.json()
return result['choices'][0]['message']['content']
except requests.exceptions.RequestException as e:
return f"Error: Failed to get response from {model}: {str(e)}"
def read_questions(file_obj):
"""Read questions from uploaded file and return as list"""
with open(file_obj.name, 'r') as file:
questions = [q.strip() for q in file.readlines() if q.strip()]
if len(questions) > MAX_QUESTIONS:
raise gr.Error(f"Maximum {MAX_QUESTIONS} questions allowed.")
return questions
with gr.Blocks() as demo:
gr.Markdown("# Vibes Benchmark\nUpload a `.txt` file with **one question per line**.")
file_input = gr.File(label="Upload your questions (.txt)")
run_button = gr.Button("Run Benchmark", variant="primary")
# Create dynamic response areas
response_areas = []
for i in range(MAX_QUESTIONS):
with gr.Group(visible=False) as group_i:
gr.Markdown(f"### Question {i+1}")
with gr.Row():
with gr.Column():
# Accordion for Model 1
with gr.Accordion("Model 1", open=False):
model1_i = gr.Markdown("")
response1_i = gr.Textbox(label="Response 1", interactive=False, lines=4)
with gr.Column():
# Accordion for Model 2
with gr.Accordion("Model 2", open=False):
model2_i = gr.Markdown("")
response2_i = gr.Textbox(label="Response 2", interactive=False, lines=4)
gr.Markdown("---")
response_areas.append({
'group': group_i,
'model1': model1_i,
'response1': response1_i,
'model2': model2_i,
'response2': response2_i
})
def process_file(file):
"""Show/hide question groups depending on how many questions are in the file."""
if file is None:
raise gr.Error("Please upload a file first.")
questions = read_questions(file)
# Show as many question groups as needed; hide the rest
updates = []
for i in range(MAX_QUESTIONS):
updates.append(gr.update(visible=(i < len(questions))))
return updates
def run_benchmark(file):
"""Generator function yielding partial updates in real time."""
questions = read_questions(file)
# Initialize all update values as blank
# We have 4 fields per question (model1, response1, model2, response2)
# => total of MAX_QUESTIONS * 4 output components
updates = [gr.update(value="")] * (MAX_QUESTIONS * 4)
# Process each question, 2 models per question
for i, question in enumerate(questions):
# 1) Pick first model, yield it
model_1 = random.choice(MODELS)
updates[i*4] = gr.update(value=f"**{model_1}**") # model1 for question i
yield updates # partial update (reveal model_1 accordion)
# 2) Get response from model_1
response_1 = get_response(question, model_1)
updates[i*4 + 1] = gr.update(value=response_1) # response1
yield updates
# 3) Pick second model (ensure different from first), yield it
remaining_models = [m for m in MODELS if m != model_1]
model_2 = random.choice(remaining_models)
updates[i*4 + 2] = gr.update(value=f"**{model_2}**") # model2
yield updates
# 4) Get response from model_2
response_2 = get_response(question, model_2)
updates[i*4 + 3] = gr.update(value=response_2) # response2
yield updates
# The outputs we update after each yield
update_targets = []
for area in response_areas:
update_targets.append(area['model1'])
update_targets.append(area['response1'])
update_targets.append(area['model2'])
update_targets.append(area['response2'])
# Connect events
file_input.change(
fn=process_file,
inputs=file_input,
outputs=[area['group'] for area in response_areas]
)
run_button.click(
fn=run_benchmark,
inputs=file_input,
outputs=update_targets
)
# Enable queue for partial outputs to appear as they are yielded
demo.queue()
demo.launch()
|