File size: 25,499 Bytes
06fdab0 67a3b3a c60890d 67a3b3a be0c1cc fe81a63 67a3b3a 06fdab0 fe81a63 06fdab0 fe81a63 06fdab0 fe81a63 8669daf fe81a63 8669daf 06fdab0 67a3b3a 4a5b0ec 67a3b3a 4a5b0ec 67a3b3a 06fdab0 67a3b3a be0c1cc 67a3b3a fe81a63 67a3b3a c60890d 67a3b3a c60890d 67a3b3a c60890d 67a3b3a 06fdab0 be0c1cc fe81a63 be0c1cc fe81a63 06fdab0 fe81a63 be0c1cc fe81a63 4a5b0ec fe81a63 06fdab0 fe81a63 be0c1cc fe81a63 be0c1cc fe81a63 80db4e0 fe81a63 be0c1cc 06fdab0 fe81a63 06fdab0 be0c1cc fe81a63 be0c1cc 06fdab0 fe81a63 be0c1cc 06fdab0 be0c1cc fe81a63 06fdab0 be0c1cc fe81a63 be0c1cc fe81a63 be0c1cc fe81a63 be0c1cc fe81a63 be0c1cc fe81a63 be0c1cc fe81a63 06fdab0 be0c1cc fe81a63 be0c1cc fe81a63 be0c1cc fe81a63 be0c1cc fe81a63 be0c1cc fe81a63 be0c1cc 06fdab0 fe81a63 be0c1cc fe81a63 be0c1cc fe81a63 be0c1cc fe81a63 06fdab0 be0c1cc 06fdab0 b2e8df3 be0c1cc 4a5b0ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
import gradio as gr
import random
import time
import os
import requests
import json
from dotenv import load_dotenv
import threading
from queue import Queue, Empty
import shutil
# Load environment variables
load_dotenv()
# Create static directory if it doesn't exist
os.makedirs('static', exist_ok=True)
# Copy testquestions.txt to static directory if it exists
if os.path.exists('testquestions.txt'):
shutil.copy2('testquestions.txt', 'static/testquestions.txt')
MAX_QUESTIONS = 10 # Maximum number of questions to support
######
# Models configuration
#
MODELS = [
# Standard Language Models
{"display_name": "Claude 3 Opus", "model_id": "anthropic/claude-3-opus-20240229"},
{"display_name": "Claude 3.5 Sonnet", "model_id": "anthropic/claude-3.5-sonnet"},
{"display_name": "Gemini Flash 2.0 ", "model_id": "google/gemini-2.0-flash-exp:free"},
{"display_name": "Mistral Large", "model_id": "mistralai/mistral-large-2411"},
# {"display_name": "Claude 2.1", "model_id": "anthropic/claude-2.1"},
{"display_name": "GPT-4o", "model_id": "openai/gpt-4o-2024-11-20"},
# {"display_name": "GPT-3.5 Turbo", "model_id": "openai/gpt-3.5-turbo"},
# Reasoning-specialized Models
{"display_name": "Reasoner: O1-Mini", "model_id": "openai/o1-mini"},
{"display_name": "Reasoner: O1 Preview", "model_id": "openai/o1-preview"},
{"display_name": "Reasoner: DeepSeek R1", "model_id": "deepseek/deepseek-r1"},
{"display_name": "Reasoner: Google Gemni 2.0 Flash Thinking", "model_id": "google/gemini-2.0-flash-thinking-exp:free"}
]
# Get configuration from environment variables
OPENROUTER_API_KEY = os.getenv('OPENROUTER_API_KEY')
OPENROUTER_BASE_URL = os.getenv('OPENROUTER_BASE_URL', 'https://openrouter.ai/api/v1/chat/completions')
if not OPENROUTER_API_KEY:
raise ValueError("Missing OPENROUTER_API_KEY. Please set it in your environment variables or .env file.")
def get_response(question, model):
"""Get response from OpenRouter API for the given question and model."""
headers = {
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "${SPACE_ID}.hf.space" if os.getenv('SPACE_ID') else "http://localhost:7860",
"Content-Type": "application/json"
}
data = {
"model": model, # model is now the direct model_id
"messages": [
{"role": "user", "content": question}
],
"stream": True
}
try:
response = requests.post(
OPENROUTER_BASE_URL,
headers=headers,
json=data,
timeout=30, # 30 second timeout
stream=True
)
response.raise_for_status()
full_response = ""
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
json_str = line[6:] # Remove 'data: ' prefix
if json_str.strip() == '[DONE]':
break
try:
chunk = json.loads(json_str)
if chunk['choices'][0]['delta'].get('content'):
content = chunk['choices'][0]['delta']['content']
full_response += content
yield full_response
except json.JSONDecodeError:
continue
return full_response
except requests.exceptions.RequestException as e:
return f"Error: Failed to get response from {model}: {str(e)}"
def read_questions(file_obj):
"""Read questions from uploaded file and return as list"""
with open(file_obj.name, 'r') as file:
questions = [q.strip() for q in file.readlines() if q.strip()]
if len(questions) > MAX_QUESTIONS:
raise gr.Error(f"Maximum {MAX_QUESTIONS} questions allowed.")
return questions
with gr.Blocks(title="Vibesmark Test Suite") as demo:
gr.Markdown("# Vibesmark Test Suite")
# Store current state
state = gr.State({
"questions": [],
"current_index": 0,
"preferences": {}, # Store preferences for each question
"current_model_order": {}, # Track which model is shown on which side
"test_started": False # Track if test has started
})
# Move model selection to the top
with gr.Row():
with gr.Column():
model1_selector = gr.Dropdown(
choices={model["model_id"]: model["display_name"] for model in MODELS},
label="Select First Model",
value="openai/gpt-4-turbo-preview",
type="value",
allow_custom_value=False
)
with gr.Column():
model2_selector = gr.Dropdown(
choices={model["model_id"]: model["display_name"] for model in MODELS},
label="Select Second Model",
value="google/gemini-pro",
type="value",
allow_custom_value=False
)
with gr.Row():
with gr.Column():
gr.Markdown("Upload a `.txt` file with **one question per line**.")
file_input = gr.File(label="Upload your questions (.txt)")
with gr.Column():
gr.Markdown("Download example questions:")
gr.HTML('<a href="testquestions.txt" download>Download testquestions.txt</a>')
with gr.Row():
start_btn = gr.Button("Start Test", variant="primary")
finish_btn = gr.Button("Finish & Show Results", variant="secondary", interactive=False)
results_display = gr.Markdown("Click 'Finish & Show Results' when you're done to see the summary", visible=True)
# Add confirmation dialog
with gr.Row(visible=False) as confirm_dialog:
gr.Markdown("Are you sure you want to finish the test? This will reset all progress.")
with gr.Row():
confirm_btn = gr.Button("Yes, Finish Test", variant="primary")
cancel_btn = gr.Button("Cancel", variant="secondary")
with gr.Group(visible=False) as question_group:
question_display = gr.Markdown("### Upload a file to begin")
with gr.Row():
with gr.Column():
response1_display = gr.Textbox(label="Response A", interactive=False, lines=8)
with gr.Column():
response2_display = gr.Textbox(label="Response B", interactive=False, lines=8)
# Add preference selection buttons
with gr.Row():
prefer_a_btn = gr.Button("Prefer Response A", interactive=False, variant="secondary")
preference_display = gr.Markdown("Make your selection")
prefer_b_btn = gr.Button("Prefer Response B", interactive=False, variant="secondary")
# Add vertical spacing
gr.Row(height=30)
# Move navigation to bottom of question group
with gr.Row():
prev_btn = gr.Button("← Previous", interactive=False)
question_counter = gr.Markdown("Question 0 / 0")
next_btn = gr.Button("Next →", interactive=False)
def start_test(state, model_1, model_2):
"""Start the test and lock model selection"""
if not state["questions"]:
raise gr.Error("Please upload a file first.")
if model_1 == model_2:
raise gr.Error("Please select different models for comparison.")
new_state = state.copy()
new_state["test_started"] = True
current_index = state["current_index"]
current_question = state["questions"][current_index]
# Get existing preference if any
current_pref = state["preferences"].get(current_index, None)
pref_display = "Make your selection"
if current_pref is not None:
pref_display = f"You preferred Response {current_pref}"
# First yield the initial state updates
yield [
new_state,
gr.update(interactive=False), # model1_selector
gr.update(interactive=False), # model2_selector
gr.update(interactive=False), # start_btn
gr.update(interactive=True), # finish_btn
"", # response1_display
"", # response2_display
gr.update(interactive=True), # prefer_a_btn - Enable immediately
gr.update(interactive=True), # prefer_b_btn - Enable immediately
pref_display, # preference_display
gr.update(visible=True) # question_group
]
# Randomly decide which model goes on which side
if random.choice([True, False]):
model_a, model_b = model_1, model_2
else:
model_a, model_b = model_2, model_1
# Store the model order in state
new_state["current_model_order"][current_index] = {
"A": model_a,
"B": model_b
}
# Stream both model responses in parallel
for partial1, partial2 in get_responses_in_parallel(current_question, model_a, model_b):
# Check current preference again in case it changed during streaming
current_pref = new_state["preferences"].get(current_index, None)
pref_display = "Make your selection"
if current_pref is not None:
pref_display = f"You preferred Response {current_pref}"
yield [
new_state,
gr.update(interactive=False), # model1_selector
gr.update(interactive=False), # model2_selector
gr.update(interactive=False), # start_btn
gr.update(interactive=True), # finish_btn
partial1, # response1_display
partial2, # response2_display
gr.update(interactive=True), # prefer_a_btn - Keep enabled during streaming
gr.update(interactive=True), # prefer_b_btn - Keep enabled during streaming
pref_display, # preference_display - Maintain current preference
gr.update(visible=True) # question_group
]
def process_file(file, state):
if file is None:
raise gr.Error("Please upload a file first.")
questions = read_questions(file)
new_state = {
"questions": questions,
"current_index": 0,
"preferences": {},
"current_model_order": {},
"test_started": False
}
# Return outputs in order matching the outputs list in the event handler
return [
f"### Question 1:\n{questions[0]}", # question_display
f"Question 1 / {len(questions)}", # question_counter
gr.update(interactive=False), # prev_btn
gr.update(interactive=len(questions) > 1), # next_btn
gr.update(value=""), # response1_display
gr.update(value=""), # response2_display
gr.update(interactive=False), # prefer_a_btn
gr.update(interactive=False), # prefer_b_btn
"Make your selection", # preference_display
new_state, # state
gr.update(interactive=True), # start_btn
gr.update(interactive=False), # finish_btn
gr.update(visible=False) # question_group
]
def navigate_question(direction, state, model_1, model_2):
"""Navigate to next/prev question and start fetching responses"""
if not state["test_started"]:
raise gr.Error("Please start the test first")
questions = state["questions"]
current_index = state["current_index"]
if direction == "next" and current_index < len(questions) - 1:
current_index += 1
elif direction == "prev" and current_index > 0:
current_index -= 1
else:
raise gr.Error("No more questions in that direction")
new_state = state.copy()
new_state["current_index"] = current_index
# Get existing preference for this question if any
current_pref = state["preferences"].get(current_index, None)
pref_display = "Make your selection"
if current_pref is not None:
pref_display = f"You preferred Response {current_pref}"
# First yield to update the question display and clear responses
yield [
f"### Question {current_index + 1}:\n{questions[current_index]}", # question_display
f"Question {current_index + 1} / {len(questions)}", # question_counter
gr.update(interactive=current_index > 0), # prev_btn
gr.update(interactive=current_index < len(questions) - 1), # next_btn
"", # response1_display
"", # response2_display
gr.update(interactive=True), # prefer_a_btn - Enable immediately
gr.update(interactive=True), # prefer_b_btn - Enable immediately
pref_display, # preference_display
new_state, # state
gr.update(visible=True) # question_group
]
# Now start fetching responses
current_question = questions[current_index]
# Randomly decide which model goes on which side
if random.choice([True, False]):
model_a, model_b = model_1, model_2
else:
model_a, model_b = model_2, model_1
# Store the model order in state
new_state["current_model_order"][current_index] = {
"A": model_a,
"B": model_b
}
# Stream both model responses in parallel
for partial1, partial2 in get_responses_in_parallel(current_question, model_a, model_b):
# Check current preference again in case it changed during streaming
current_pref = new_state["preferences"].get(current_index, None)
pref_display = "Make your selection"
if current_pref is not None:
pref_display = f"You preferred Response {current_pref}"
yield [
f"### Question {current_index + 1}:\n{questions[current_index]}", # question_display
f"Question {current_index + 1} / {len(questions)}", # question_counter
gr.update(interactive=current_index > 0), # prev_btn
gr.update(interactive=current_index < len(questions) - 1), # next_btn
partial1, # response1_display
partial2, # response2_display
gr.update(interactive=True), # prefer_a_btn - Keep enabled during streaming
gr.update(interactive=True), # prefer_b_btn - Keep enabled during streaming
pref_display, # preference_display - Maintain current preference
new_state, # state
gr.update(visible=True) # question_group
]
def record_preference(choice, state):
"""Record user's preference for the current question"""
current_index = state["current_index"]
new_state = state.copy()
new_state["preferences"][current_index] = choice
# Get the actual models for this choice
model_order = state["current_model_order"].get(current_index, {})
model_a = model_order.get("A", "Unknown")
model_b = model_order.get("B", "Unknown")
# Create a more detailed preference message
if choice == "A":
preferred_model = model_a
other_model = model_b
else:
preferred_model = model_b
other_model = model_a
message = f"You preferred {preferred_model} over {other_model}"
return [
new_state,
message
]
def get_responses_in_parallel(question, model1, model2):
"""
Spawn two threads to run get_response for each model in parallel,
queuing partial responses as they arrive. Yields tuples of
(partial_response_model1, partial_response_model2).
"""
queue1 = Queue()
queue2 = Queue()
def fill_queue(q, question, model):
for partial_response in get_response(question, model):
q.put(partial_response)
q.put(None) # Sentinel indicating completion
# Spawn threads
t1 = threading.Thread(target=fill_queue, args=(queue1, question, model1))
t2 = threading.Thread(target=fill_queue, args=(queue2, question, model2))
t1.start()
t2.start()
# Initialize trackers
partial1 = ""
partial2 = ""
done1 = False
done2 = False
# Keep yielding as long as at least one thread is still producing
while not (done1 and done2):
try:
item1 = queue1.get(timeout=0.1)
if item1 is None:
done1 = True
else:
partial1 = item1
except Empty:
pass
try:
item2 = queue2.get(timeout=0.1)
if item2 is None:
done2 = True
else:
partial2 = item2
except Empty:
pass
yield partial1, partial2
# Join threads and finish
t1.join()
t2.join()
def reset_interface():
"""Reset all interface elements to their initial state"""
return [
gr.update(interactive=True), # model1_selector
gr.update(interactive=True), # model2_selector
gr.update(interactive=True), # start_btn
gr.update(interactive=False), # finish_btn
gr.update(value=""), # response1_display
gr.update(value=""), # response2_display
gr.update(interactive=False), # prefer_a_btn
gr.update(interactive=False), # prefer_b_btn
"Make your selection", # preference_display
gr.update(value="### Upload a file to begin"), # question_display
gr.update(value="Question 0 / 0"), # question_counter
gr.update(interactive=False), # prev_btn
gr.update(interactive=False), # next_btn
{ # Fresh state
"questions": [],
"current_index": 0,
"preferences": {},
"current_model_order": {},
"test_started": False
},
gr.update(visible=False) # question_group
]
def generate_results_summary(state):
"""Generate a summary of which model was preferred for which questions"""
if not state["preferences"]:
return ["No preferences recorded yet."] + reset_interface()
# Create a mapping of model to preferred question numbers
model_preferences = {}
for q_idx, choice in state["preferences"].items():
# Get the model order for this question
model_order = state["current_model_order"].get(q_idx, {})
if not model_order:
continue
# Determine which model was preferred
preferred_model = model_order["A"] if choice == "A" else model_order["B"]
# Get display name for the model
display_name = next((m["display_name"] for m in MODELS if m["model_id"] == preferred_model), preferred_model)
if display_name not in model_preferences:
model_preferences[display_name] = []
model_preferences[display_name].append(str(q_idx + 1)) # +1 for 1-based indexing
# Format the results
summary_parts = []
for model, questions in model_preferences.items():
summary_parts.append(f"**{model}** won questions {', '.join(questions)}")
summary = "### Results Summary\n" + "\n\n".join(summary_parts)
# Return summary and reset interface
return [summary] + reset_interface() + [gr.update(visible=False)] # Hide question_group
def show_confirm_dialog(state):
"""Show confirmation dialog if test has started"""
if not state["test_started"] or not state["questions"]:
return [
gr.update(visible=False), # confirm_dialog
["No test in progress to finish."] + reset_interface() + [gr.update(visible=False)] # results and reset
]
return [
gr.update(visible=True), # confirm_dialog
None # No results update
]
def hide_confirm_dialog():
"""Hide the confirmation dialog"""
return gr.update(visible=False)
# Connect events
file_input.change(
fn=process_file,
inputs=[file_input, state],
outputs=[
question_display,
question_counter,
prev_btn,
next_btn,
response1_display,
response2_display,
prefer_a_btn,
prefer_b_btn,
preference_display,
state,
start_btn,
finish_btn,
question_group
]
)
prev_btn.click(
fn=navigate_question,
inputs=[
gr.State("prev"),
state,
model1_selector,
model2_selector
],
outputs=[
question_display,
question_counter,
prev_btn,
next_btn,
response1_display,
response2_display,
prefer_a_btn,
prefer_b_btn,
preference_display,
state,
question_group
]
)
next_btn.click(
fn=navigate_question,
inputs=[
gr.State("next"),
state,
model1_selector,
model2_selector
],
outputs=[
question_display,
question_counter,
prev_btn,
next_btn,
response1_display,
response2_display,
prefer_a_btn,
prefer_b_btn,
preference_display,
state,
question_group
]
)
start_btn.click(
fn=start_test,
inputs=[state, model1_selector, model2_selector],
outputs=[
state,
model1_selector,
model2_selector,
start_btn,
finish_btn,
response1_display,
response2_display,
prefer_a_btn,
prefer_b_btn,
preference_display,
question_group
]
)
# Connect preference buttons
prefer_a_btn.click(
fn=lambda state: record_preference("A", state),
inputs=[state],
outputs=[state, preference_display]
)
prefer_b_btn.click(
fn=lambda state: record_preference("B", state),
inputs=[state],
outputs=[state, preference_display]
)
# Connect results button to show confirmation first
finish_btn.click(
fn=show_confirm_dialog,
inputs=[state],
outputs=[
confirm_dialog,
results_display
]
)
# Connect cancel button
cancel_btn.click(
fn=hide_confirm_dialog,
outputs=[confirm_dialog]
)
# Connect confirm button to actual finish action
confirm_btn.click(
fn=generate_results_summary,
inputs=[state],
outputs=[
results_display,
model1_selector,
model2_selector,
start_btn,
finish_btn,
response1_display,
response2_display,
prefer_a_btn,
prefer_b_btn,
preference_display,
question_display,
question_counter,
prev_btn,
next_btn,
state
]
).then(
fn=hide_confirm_dialog,
outputs=[confirm_dialog]
)
# Add footer with subtle styling
gr.Markdown("<p style='color: #666; font-size: 0.8em; text-align: center; margin-top: 2em;'>Homegrown software from the Chateau</p>")
# Enable queue for partial outputs to appear as they are yielded
demo.queue(default_concurrency_limit=5)
# Launch with the appropriate host setting for deployment
if __name__ == "__main__":
demo.launch()
|