Al-Atlas-LLM / app.py
BounharAbdelaziz's picture
Update app.py
040a791 verified
raw
history blame
2.37 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
# token
token = os.environ['TOKEN']
# Load the pretrained model and tokenizer
MODEL_NAME = "atlasia/Al-Atlas-LLM"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=token)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=token).to('cuda')
# Predefined examples
examples = [
["الذكاء الاصطناعي هو فرع من علوم الكمبيوتر اللي كيركز"
, 256, 0.7, 0.9, 150, 8, 1.5],
["المستقبل ديال الذكاء الصناعي فالمغرب"
, 256, 0.7, 0.9, 150, 8, 1.5],
[" المطبخ المغربي"
, 256, 0.7, 0.9, 150, 8, 1.5],
["الماكلة المغربية كتعتبر من أحسن الماكلات فالعالم"
, 256, 0.7, 0.9, 150, 8, 1.5],
]
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
output = model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
top_p=top_p,
do_sample=True,
repetition_penalty=repetition_penalty,
num_beams=num_beams,
top_k= top_k,
early_stopping = True,
)
return tokenizer.decode(output[0], skip_special_tokens=True)
if __name__ == "__main__":
# Create the Gradio interface
with gr.Blocks() as app:
gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt: دخل النص بالدارجة"),
gr.Slider(50, 500, value=256, label="Max Length"),
gr.Slider(0.1, 1.5, value=0.7, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.9, label="Top-p"),
gr.Slider(1, 10000, value=150, label="Top-k"),
gr.Slider(1, 20, value=8, label="Number of Beams"),
gr.Slider(0.0, 100.0, value=1.5, label="Repetition Penalty"),
],
outputs=gr.Textbox(label="Generated Text in Moroccan Darija"),
title="Moroccan Darija LLM",
description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija.",
examples=examples,
)
app.launch(ssr=False)