Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,19 @@ MODEL_NAME = "atlasia/Al-Atlas-LLM"
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=token)
|
12 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=token)
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
16 |
output = model.generate(
|
17 |
**inputs,
|
@@ -20,7 +32,7 @@ def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150,
|
|
20 |
top_p=top_p,
|
21 |
do_sample=True,
|
22 |
repetition_penalty=repetition_penalty,
|
23 |
-
num_beams=
|
24 |
top_k= top_k,
|
25 |
early_stopping = True,
|
26 |
)
|
@@ -35,12 +47,14 @@ iface = gr.Interface(
|
|
35 |
gr.Slider(0.1, 1.5, value=0.7, label="Temperature"),
|
36 |
gr.Slider(0.1, 1.0, value=0.9, label="Top-p"),
|
37 |
gr.Slider(1, 10000, value=150, label="Top-k"),
|
|
|
38 |
gr.Slider(0.0, 100.0, value=1.5, label="Repetition Penalty"),
|
39 |
],
|
40 |
outputs=gr.Textbox(label="Generated Text in Moroccan Darija"),
|
41 |
title="Moroccan Darija LLM",
|
42 |
-
description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija."
|
|
|
43 |
)
|
44 |
|
45 |
if __name__ == "__main__":
|
46 |
-
iface.launch()
|
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=token)
|
12 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=token)
|
13 |
|
14 |
+
# Predefined examples
|
15 |
+
examples = [
|
16 |
+
["الذكاء الاصطناعي هو فرع من علوم الكمبيوتر اللي كيركز"
|
17 |
+
, 256, 0.7, 0.9, 150, 8, 1.5],
|
18 |
+
["المستقبل ديال الذكاء الصناعي فالمغرب"
|
19 |
+
, 256, 0.7, 0.9, 150, 8, 1.5],
|
20 |
+
[" المطبخ المغربي"
|
21 |
+
, 256, 0.7, 0.9, 150, 8, 1.5],
|
22 |
+
["الماكلة المغربية كتعتبر من أحسن الماكلات فالعالم"
|
23 |
+
, 256, 0.7, 0.9, 150, 8, 1.5],
|
24 |
+
]
|
25 |
+
|
26 |
+
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
|
27 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
28 |
output = model.generate(
|
29 |
**inputs,
|
|
|
32 |
top_p=top_p,
|
33 |
do_sample=True,
|
34 |
repetition_penalty=repetition_penalty,
|
35 |
+
num_beams=num_beams,
|
36 |
top_k= top_k,
|
37 |
early_stopping = True,
|
38 |
)
|
|
|
47 |
gr.Slider(0.1, 1.5, value=0.7, label="Temperature"),
|
48 |
gr.Slider(0.1, 1.0, value=0.9, label="Top-p"),
|
49 |
gr.Slider(1, 10000, value=150, label="Top-k"),
|
50 |
+
gr.Slider(1, 20, value=8, label="Number of Beams"),
|
51 |
gr.Slider(0.0, 100.0, value=1.5, label="Repetition Penalty"),
|
52 |
],
|
53 |
outputs=gr.Textbox(label="Generated Text in Moroccan Darija"),
|
54 |
title="Moroccan Darija LLM",
|
55 |
+
description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija.",
|
56 |
+
examples=examples,
|
57 |
)
|
58 |
|
59 |
if __name__ == "__main__":
|
60 |
+
iface.launch(share=True)
|