import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import os # token token = os.environ['TOKEN'] # Load the pretrained model and tokenizer MODEL_NAME = "atlasia/Al-Atlas-LLM" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=token) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=token) def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, repetition_penalty=1.5): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) output = model.generate( **inputs, max_length=max_length, temperature=temperature, top_p=top_p, do_sample=True, repetition_penalty=repetition_penalty, num_beams=8, top_k= top_k, early_stopping = True, ) return tokenizer.decode(output[0], skip_special_tokens=True) # Create the Gradio interface iface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Prompt: دخل النص بالدارجة"), gr.Slider(50, 500, value=256, label="Max Length"), gr.Slider(0.1, 1.5, value=0.7, label="Temperature"), gr.Slider(0.1, 1.0, value=0.9, label="Top-p"), gr.Slider(1, 10000, value=150, label="Top-k"), gr.Slider(0.0, 100.0, value=1.5, label="Repetition Penalty"), ], outputs=gr.Textbox(label="Generated Text in Moroccan Darija"), title="Moroccan Darija LLM", description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija." ) if __name__ == "__main__": iface.launch()