import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import os # token token = os.environ['TOKEN'] # Load the pretrained model and tokenizer MODEL_NAME = "atlasia/Al-Atlas-LLM" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=token) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=token).to('cuda') # Predefined examples examples = [ ["الذكاء الاصطناعي هو فرع من علوم الكمبيوتر اللي كيركز" , 256, 0.7, 0.9, 150, 8, 1.5], ["المستقبل ديال الذكاء الصناعي فالمغرب" , 256, 0.7, 0.9, 150, 8, 1.5], [" المطبخ المغربي" , 256, 0.7, 0.9, 150, 8, 1.5], ["الماكلة المغربية كتعتبر من أحسن الماكلات فالعالم" , 256, 0.7, 0.9, 150, 8, 1.5], ] def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) output = model.generate( **inputs, max_length=max_length, temperature=temperature, top_p=top_p, do_sample=True, repetition_penalty=repetition_penalty, num_beams=num_beams, top_k= top_k, early_stopping = True, ) return tokenizer.decode(output[0], skip_special_tokens=True) if __name__ == "__main__": # Create the Gradio interface with gr.Blocks() as app: gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Prompt: دخل النص بالدارجة"), gr.Slider(50, 500, value=256, label="Max Length"), gr.Slider(0.1, 1.5, value=0.7, label="Temperature"), gr.Slider(0.1, 1.0, value=0.9, label="Top-p"), gr.Slider(1, 10000, value=150, label="Top-k"), gr.Slider(1, 20, value=8, label="Number of Beams"), gr.Slider(0.0, 100.0, value=1.5, label="Repetition Penalty"), ], outputs=gr.Textbox(label="Generated Text in Moroccan Darija"), title="Moroccan Darija LLM", description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija.", examples=examples, ) app.launch(ssr=False)