BounharAbdelaziz's picture
changed path to /home/user/app for accessing json files
2cabce8
raw
history blame
9.03 kB
from utils import (
update_leaderboard_multilingual,
update_leaderboard_one_vs_all,
handle_evaluation,
process_results_file,
create_html_image,
)
import os
import gradio as gr
from constants import *
if __name__ == "__main__":
with gr.Blocks() as app:
base_path = os.path.dirname(__file__)
local_image_path = os.path.join(base_path, 'open_arabic_lid_arena.png')
gr.HTML(create_html_image(local_image_path))
gr.Markdown("# 🏅 Open Arabic Dialect Identification Leaderboard")
# Multi-dialects leaderboard
with gr.Tab("Multi-dialects model leaderboard"):
gr.Markdown("""
Complete leaderboard across multiple arabic dialects.
Compare the performance of different models across various metrics such as FNR, FPR, and other clasical metrics.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Select country to display")
country_selector = gr.Dropdown(
choices=supported_dialects,
value='Morocco', # Default to Morocco of course
label="Country"
)
with gr.Column(scale=2):
gr.Markdown("### Select metrics to display")
metric_checkboxes = gr.CheckboxGroup(
choices=metrics,
value=default_metrics,
label="Metrics"
)
with gr.Row():
leaderboard_table = gr.DataFrame(
interactive=False
)
gr.Markdown("</br>")
gr.Markdown("## Contribute to the Leaderboard")
gr.Markdown("""
We welcome contributions from the community!
If you have a model that you would like to see on the leaderboard, please use the 'Evaluate a model' or 'Upload your results' tabs to submit your model's performance.
Let's work together to improve Arabic dialect identification! 🚀
""")
# Dialect confusion leaderboard
with gr.Tab("Dialect confusion leaderboard"): # use to be "One-vs-All leaderboard"
gr.Markdown("""
Detailed analysis of how well models distinguish specific dialects from others.
For each target dialect, see how often models incorrectly classify other dialects as the target.
Lower `false_positive_rate` indicate better ability to identify the true dialect by
showing **how often it misclassifies other dialects as the target dialect**.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Select your target language")
target_language_selector = gr.Dropdown(
choices=languages_to_display_one_vs_all,
value='Morocco', # Default to Morocco of course
label="Target Language"
)
with gr.Column(scale=2):
gr.Markdown("### Select languages to compare to")
languages_checkboxes = gr.CheckboxGroup(
choices=languages_to_display_one_vs_all,
value=default_languages,
label="Languages"
)
with gr.Row():
binary_leaderboard_table = gr.DataFrame(
interactive=False
)
with gr.Tab("Evaluate a model"):
gr.Markdown("Suggest a model to evaluate 🤗 (Supports only **Fasttext** models as SfayaLID, GlotLID, OpenLID, etc.)")
gr.Markdown("For other models, you are welcome to **submit your results** through the upload section.")
model_path = gr.Textbox(label="Model Path", placeholder='path/to/model')
model_path_bin = gr.Textbox(label=".bin filename", placeholder='model.bin')
gr.Markdown("### **⚠️ To ensure correct results, tick this when the model's labels are the iso_codes**")
use_mapping = gr.Checkbox(label="Does not map to country", value=True) # Initially enabled
eval_button = gr.Button("Evaluate", value=False) # Initially disabled
# Status message area
status_message = gr.Markdown(value="")
def update_status_message():
return "### **⚠️Evaluating... Please wait...**"
eval_button.click(update_status_message, outputs=[status_message])
eval_button.click(handle_evaluation, inputs=[model_path, model_path_bin, use_mapping], outputs=[leaderboard_table, status_message])
with gr.Tab("Upload your results"):
# Define a code block to display
code_snippet = """
```python
# Load your model
model = ... # Load your model here
# Load evaluation benchmark
eval_dataset = load_dataset("atlasia/Arabic-LID-Leaderboard", split='test').to_pandas() # do not change this line :)
# Predict labels using your model
eval_dataset['preds'] = eval_dataset['text'].apply(lambda text: predict_label(text, model)) # predict_label is a function that you need to define for your model
# now drop the columns that are not needed, i.e. 'text', 'metadata' and 'dataset_source'
df_eval = df_eval.drop(columns=['text', 'metadata', 'dataset_source'])
df_eval.to_csv('your_model_name.csv')
# submit your results: 'your_model_name.csv' to the leaderboard
```
"""
gr.Markdown("## Upload your results to the leaderboard 🚀")
gr.Markdown("### Submission guidelines: Run the test dataset on your model and save the results in a CSV file. Bellow a code snippet to help you with that.")
gr.Markdown("### Nota Bene: The One-vs-All leaderboard evaluation is currently unavailable with the csv upload but will be implemented soon. Stay tuned!")
gr.Markdown(code_snippet)
uploaded_model_name = gr.Textbox(label="Model name", placeholder='Your model/team name')
file = gr.File(label="Upload your results")
upload_button = gr.Button("Upload")
# Status message area
status_message = gr.Markdown(value="")
def update_status_message():
return "### **⚠️Evaluating... Please wait...**"
upload_button.click(update_status_message, outputs=[status_message])
upload_button.click(process_results_file, inputs=[file, uploaded_model_name], outputs=[leaderboard_table, status_message])
# Update multilangual table when any input changes
country_selector.change(
update_leaderboard_multilingual,
inputs=[country_selector, metric_checkboxes],
outputs=leaderboard_table
)
metric_checkboxes.change(
update_leaderboard_multilingual,
inputs=[country_selector, metric_checkboxes],
outputs=leaderboard_table
)
# Update binary table when any input changes
target_language_selector.change(
update_leaderboard_one_vs_all,
inputs=[target_language_selector, languages_checkboxes],
outputs=[binary_leaderboard_table, languages_checkboxes]
)
languages_checkboxes.change(
update_leaderboard_one_vs_all,
inputs=[target_language_selector, languages_checkboxes],
outputs=[binary_leaderboard_table, languages_checkboxes]
)
# Define load event to run at startup
app.load(
update_leaderboard_one_vs_all,
inputs=[target_language_selector, languages_checkboxes],
outputs=[binary_leaderboard_table, languages_checkboxes]
)
app.load(
update_leaderboard_multilingual,
inputs=[country_selector, metric_checkboxes],
outputs=leaderboard_table
)
app.launch(allowed_paths=[base_path])