|
from utils import (
|
|
update_leaderboard_multilingual,
|
|
update_leaderboard_one_vs_all,
|
|
handle_evaluation,
|
|
process_results_file,
|
|
create_html_image,
|
|
)
|
|
import os
|
|
import gradio as gr
|
|
|
|
from constants import *
|
|
|
|
if __name__ == "__main__":
|
|
|
|
with gr.Blocks() as app:
|
|
|
|
base_path = os.path.dirname(__file__)
|
|
local_image_path = os.path.join(base_path, 'open_arabic_lid_arena.png')
|
|
|
|
gr.HTML(create_html_image(local_image_path))
|
|
gr.Markdown("# 🏅 Open Arabic Dialect Identification Leaderboard")
|
|
|
|
|
|
with gr.Tab("Multi-dialects model leaderboard"):
|
|
gr.Markdown("""
|
|
Complete leaderboard across multiple arabic dialects.
|
|
Compare the performance of different models across various metrics such as FNR, FPR, and other clasical metrics.
|
|
"""
|
|
)
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
gr.Markdown("### Select country to display")
|
|
country_selector = gr.Dropdown(
|
|
choices=supported_dialects,
|
|
value='Morocco',
|
|
label="Country"
|
|
)
|
|
|
|
with gr.Column(scale=2):
|
|
gr.Markdown("### Select metrics to display")
|
|
metric_checkboxes = gr.CheckboxGroup(
|
|
choices=metrics,
|
|
value=default_metrics,
|
|
label="Metrics"
|
|
)
|
|
|
|
with gr.Row():
|
|
leaderboard_table = gr.DataFrame(
|
|
interactive=False
|
|
)
|
|
|
|
gr.Markdown("</br>")
|
|
|
|
gr.Markdown("## Contribute to the Leaderboard")
|
|
gr.Markdown("""
|
|
We welcome contributions from the community!
|
|
If you have a model that you would like to see on the leaderboard, please use the 'Evaluate a model' or 'Upload your results' tabs to submit your model's performance.
|
|
Let's work together to improve Arabic dialect identification! 🚀
|
|
""")
|
|
|
|
|
|
with gr.Tab("Dialect confusion leaderboard"):
|
|
|
|
gr.Markdown("""
|
|
Detailed analysis of how well models distinguish specific dialects from others.
|
|
For each target dialect, see how often models incorrectly classify other dialects as the target.
|
|
Lower `false_positive_rate` indicate better ability to identify the true dialect by
|
|
showing **how often it misclassifies other dialects as the target dialect**.
|
|
"""
|
|
)
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
gr.Markdown("### Select your target language")
|
|
target_language_selector = gr.Dropdown(
|
|
choices=languages_to_display_one_vs_all,
|
|
value='Morocco',
|
|
label="Target Language"
|
|
)
|
|
|
|
with gr.Column(scale=2):
|
|
gr.Markdown("### Select languages to compare to")
|
|
languages_checkboxes = gr.CheckboxGroup(
|
|
choices=languages_to_display_one_vs_all,
|
|
value=default_languages,
|
|
label="Languages"
|
|
)
|
|
|
|
with gr.Row():
|
|
binary_leaderboard_table = gr.DataFrame(
|
|
interactive=False
|
|
)
|
|
|
|
|
|
with gr.Tab("Evaluate a model"):
|
|
gr.Markdown("Suggest a model to evaluate 🤗 (Supports only **Fasttext** models as SfayaLID, GlotLID, OpenLID, etc.)")
|
|
gr.Markdown("For other models, you are welcome to **submit your results** through the upload section.")
|
|
|
|
model_path = gr.Textbox(label="Model Path", placeholder='path/to/model')
|
|
model_path_bin = gr.Textbox(label=".bin filename", placeholder='model.bin')
|
|
gr.Markdown("### **⚠️ To ensure correct results, tick this when the model's labels are the iso_codes**")
|
|
use_mapping = gr.Checkbox(label="Does not map to country", value=True)
|
|
eval_button = gr.Button("Evaluate", value=False)
|
|
|
|
|
|
status_message = gr.Markdown(value="")
|
|
def update_status_message():
|
|
return "### **⚠️Evaluating... Please wait...**"
|
|
|
|
eval_button.click(update_status_message, outputs=[status_message])
|
|
|
|
eval_button.click(handle_evaluation, inputs=[model_path, model_path_bin, use_mapping], outputs=[leaderboard_table, status_message])
|
|
|
|
with gr.Tab("Upload your results"):
|
|
|
|
|
|
code_snippet = """
|
|
```python
|
|
|
|
# Load your model
|
|
model = ... # Load your model here
|
|
|
|
# Load evaluation benchmark
|
|
eval_dataset = load_dataset("atlasia/Arabic-LID-Leaderboard", split='test').to_pandas() # do not change this line :)
|
|
|
|
# Predict labels using your model
|
|
eval_dataset['preds'] = eval_dataset['text'].apply(lambda text: predict_label(text, model)) # predict_label is a function that you need to define for your model
|
|
|
|
# now drop the columns that are not needed, i.e. 'text', 'metadata' and 'dataset_source'
|
|
df_eval = df_eval.drop(columns=['text', 'metadata', 'dataset_source'])
|
|
df_eval.to_csv('your_model_name.csv')
|
|
|
|
# submit your results: 'your_model_name.csv' to the leaderboard
|
|
|
|
```
|
|
"""
|
|
|
|
gr.Markdown("## Upload your results to the leaderboard 🚀")
|
|
gr.Markdown("### Submission guidelines: Run the test dataset on your model and save the results in a CSV file. Bellow a code snippet to help you with that.")
|
|
gr.Markdown("### Nota Bene: The One-vs-All leaderboard evaluation is currently unavailable with the csv upload but will be implemented soon. Stay tuned!")
|
|
gr.Markdown(code_snippet)
|
|
|
|
uploaded_model_name = gr.Textbox(label="Model name", placeholder='Your model/team name')
|
|
file = gr.File(label="Upload your results")
|
|
upload_button = gr.Button("Upload")
|
|
|
|
|
|
status_message = gr.Markdown(value="")
|
|
def update_status_message():
|
|
return "### **⚠️Evaluating... Please wait...**"
|
|
|
|
upload_button.click(update_status_message, outputs=[status_message])
|
|
|
|
upload_button.click(process_results_file, inputs=[file, uploaded_model_name], outputs=[leaderboard_table, status_message])
|
|
|
|
|
|
country_selector.change(
|
|
update_leaderboard_multilingual,
|
|
inputs=[country_selector, metric_checkboxes],
|
|
outputs=leaderboard_table
|
|
)
|
|
|
|
metric_checkboxes.change(
|
|
update_leaderboard_multilingual,
|
|
inputs=[country_selector, metric_checkboxes],
|
|
outputs=leaderboard_table
|
|
)
|
|
|
|
|
|
target_language_selector.change(
|
|
update_leaderboard_one_vs_all,
|
|
inputs=[target_language_selector, languages_checkboxes],
|
|
outputs=[binary_leaderboard_table, languages_checkboxes]
|
|
)
|
|
|
|
languages_checkboxes.change(
|
|
update_leaderboard_one_vs_all,
|
|
inputs=[target_language_selector, languages_checkboxes],
|
|
outputs=[binary_leaderboard_table, languages_checkboxes]
|
|
)
|
|
|
|
|
|
app.load(
|
|
update_leaderboard_one_vs_all,
|
|
inputs=[target_language_selector, languages_checkboxes],
|
|
outputs=[binary_leaderboard_table, languages_checkboxes]
|
|
)
|
|
|
|
app.load(
|
|
update_leaderboard_multilingual,
|
|
inputs=[country_selector, metric_checkboxes],
|
|
outputs=leaderboard_table
|
|
)
|
|
|
|
app.launch(allowed_paths=[base_path])
|
|
|