from utils import ( update_leaderboard_multilingual, update_leaderboard_one_vs_all, handle_evaluation, process_results_file, create_html_image, ) import os import gradio as gr from constants import * if __name__ == "__main__": with gr.Blocks() as app: base_path = os.path.dirname(__file__) local_image_path = os.path.join(base_path, 'open_arabic_lid_arena.png') gr.HTML(create_html_image(local_image_path)) gr.Markdown("# 🏅 Open Arabic Dialect Identification Leaderboard") # Multi-dialects leaderboard with gr.Tab("Multi-dialects model leaderboard"): gr.Markdown(""" Complete leaderboard across multiple arabic dialects. Compare the performance of different models across various metrics such as FNR, FPR, and other clasical metrics. """ ) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Select country to display") country_selector = gr.Dropdown( choices=supported_dialects, value='Morocco', # Default to Morocco of course label="Country" ) with gr.Column(scale=2): gr.Markdown("### Select metrics to display") metric_checkboxes = gr.CheckboxGroup( choices=metrics, value=default_metrics, label="Metrics" ) with gr.Row(): leaderboard_table = gr.DataFrame( interactive=False ) gr.Markdown("
") gr.Markdown("## Contribute to the Leaderboard") gr.Markdown(""" We welcome contributions from the community! If you have a model that you would like to see on the leaderboard, please use the 'Evaluate a model' or 'Upload your results' tabs to submit your model's performance. Let's work together to improve Arabic dialect identification! 🚀 """) # Dialect confusion leaderboard with gr.Tab("Dialect confusion leaderboard"): # use to be "One-vs-All leaderboard" gr.Markdown(""" Detailed analysis of how well models distinguish specific dialects from others. For each target dialect, see how often models incorrectly classify other dialects as the target. Lower `false_positive_rate` indicate better ability to identify the true dialect by showing **how often it misclassifies other dialects as the target dialect**. """ ) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Select your target language") target_language_selector = gr.Dropdown( choices=languages_to_display_one_vs_all, value='Morocco', # Default to Morocco of course label="Target Language" ) with gr.Column(scale=2): gr.Markdown("### Select languages to compare to") languages_checkboxes = gr.CheckboxGroup( choices=languages_to_display_one_vs_all, value=default_languages, label="Languages" ) with gr.Row(): binary_leaderboard_table = gr.DataFrame( interactive=False ) with gr.Tab("Evaluate a model"): gr.Markdown("Suggest a model to evaluate 🤗 (Supports only **Fasttext** models as SfayaLID, GlotLID, OpenLID, etc.)") gr.Markdown("For other models, you are welcome to **submit your results** through the upload section.") model_path = gr.Textbox(label="Model Path", placeholder='path/to/model') model_path_bin = gr.Textbox(label=".bin filename", placeholder='model.bin') gr.Markdown("### **⚠️ To ensure correct results, tick this when the model's labels are the iso_codes**") use_mapping = gr.Checkbox(label="Does not map to country", value=True) # Initially enabled eval_button = gr.Button("Evaluate", value=False) # Initially disabled # Status message area status_message = gr.Markdown(value="") def update_status_message(): return "### **⚠️Evaluating... Please wait...**" eval_button.click(update_status_message, outputs=[status_message]) eval_button.click(handle_evaluation, inputs=[model_path, model_path_bin, use_mapping], outputs=[leaderboard_table, status_message]) with gr.Tab("Upload your results"): # Define a code block to display code_snippet = """ ```python # Load your model model = ... # Load your model here # Load evaluation benchmark eval_dataset = load_dataset("atlasia/Arabic-LID-Leaderboard", split='test').to_pandas() # do not change this line :) # Predict labels using your model eval_dataset['preds'] = eval_dataset['text'].apply(lambda text: predict_label(text, model)) # predict_label is a function that you need to define for your model # now drop the columns that are not needed, i.e. 'text', 'metadata' and 'dataset_source' df_eval = df_eval.drop(columns=['text', 'metadata', 'dataset_source']) df_eval.to_csv('your_model_name.csv') # submit your results: 'your_model_name.csv' to the leaderboard ``` """ gr.Markdown("## Upload your results to the leaderboard 🚀") gr.Markdown("### Submission guidelines: Run the test dataset on your model and save the results in a CSV file. Bellow a code snippet to help you with that.") gr.Markdown("### Nota Bene: The One-vs-All leaderboard evaluation is currently unavailable with the csv upload but will be implemented soon. Stay tuned!") gr.Markdown(code_snippet) uploaded_model_name = gr.Textbox(label="Model name", placeholder='Your model/team name') file = gr.File(label="Upload your results") upload_button = gr.Button("Upload") # Status message area status_message = gr.Markdown(value="") def update_status_message(): return "### **⚠️Evaluating... Please wait...**" upload_button.click(update_status_message, outputs=[status_message]) upload_button.click(process_results_file, inputs=[file, uploaded_model_name], outputs=[leaderboard_table, status_message]) # Update multilangual table when any input changes country_selector.change( update_leaderboard_multilingual, inputs=[country_selector, metric_checkboxes], outputs=leaderboard_table ) metric_checkboxes.change( update_leaderboard_multilingual, inputs=[country_selector, metric_checkboxes], outputs=leaderboard_table ) # Update binary table when any input changes target_language_selector.change( update_leaderboard_one_vs_all, inputs=[target_language_selector, languages_checkboxes], outputs=[binary_leaderboard_table, languages_checkboxes] ) languages_checkboxes.change( update_leaderboard_one_vs_all, inputs=[target_language_selector, languages_checkboxes], outputs=[binary_leaderboard_table, languages_checkboxes] ) # Define load event to run at startup app.load( update_leaderboard_one_vs_all, inputs=[target_language_selector, languages_checkboxes], outputs=[binary_leaderboard_table, languages_checkboxes] ) app.load( update_leaderboard_multilingual, inputs=[country_selector, metric_checkboxes], outputs=leaderboard_table ) app.launch(allowed_paths=[base_path])