Spaces:
Running
Running
File size: 31,370 Bytes
1b58573 b1ae84d 1b58573 b1ae84d 5c69e57 bb844f7 f59521a c8d7615 8384099 bb844f7 624fa8c c4123d8 1b58573 624fa8c b1ae84d c4123d8 7f20010 c4123d8 b1ae84d 1b58573 5c69e57 e610dd6 8246815 5c69e57 eda899c 5c69e57 f56e0f7 b1ae84d 1b58573 f59521a 5c69e57 1b58573 b1ae84d 9ee88e4 b1ae84d 1b58573 5c69e57 b1ae84d 5c69e57 1b58573 5c69e57 1b58573 9ee88e4 5c69e57 8384099 f59521a 5c69e57 9ee88e4 5c69e57 9ee88e4 5c69e57 9ee88e4 5c69e57 9ee88e4 5c69e57 b1ae84d 5c69e57 1b58573 038b1de 5c69e57 b1ae84d bb844f7 5c69e57 b1ae84d 5c69e57 1b58573 5c69e57 1b58573 5c69e57 9ee88e4 5c69e57 1b58573 5c69e57 9ee88e4 5c69e57 f6dbb10 5c69e57 1b58573 bb844f7 5c69e57 bb844f7 5c69e57 bb844f7 f59521a bb844f7 2f1b118 8384099 5c69e57 8384099 5c69e57 8384099 bb844f7 f59521a 2f1b118 f59521a 8384099 f59521a bb844f7 2f1b118 624fa8c bb844f7 624fa8c bb844f7 8384099 bb844f7 c4123d8 8384099 f59521a 2f1b118 f59521a bb844f7 8384099 bb844f7 c4123d8 8384099 bb844f7 f59521a 8384099 2f1b118 c4123d8 bb844f7 2f1b118 bb844f7 c8d7615 bb844f7 c4123d8 bb844f7 d8681b3 bb844f7 d8681b3 bb844f7 c8d7615 bb844f7 5c69e57 8384099 5c69e57 bb844f7 eda899c 5c69e57 e610dd6 eda899c 5c69e57 eda899c 5c69e57 f59521a 8384099 eda899c 5c69e57 eda899c bb844f7 eda899c bb844f7 8384099 bb844f7 eda899c f59521a eda899c 5c69e57 eda899c 5c69e57 eda899c f59521a eda899c f59521a eda899c c4123d8 eda899c c4123d8 eda899c c4123d8 eda899c c4123d8 eda899c 2f1b118 eda899c d8681b3 eda899c d8681b3 eda899c c4123d8 eda899c bb844f7 5c69e57 bb844f7 5c69e57 bb844f7 f59521a bb844f7 2f1b118 5c69e57 c4123d8 5c69e57 bb844f7 eda899c 5c69e57 2f1b118 bb844f7 1b58573 b1ae84d 1b58573 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
import argparse
import os
import gradio as gr
import huggingface_hub
import numpy as np
import onnxruntime as rt
import pandas as pd
from PIL import Image
import traceback
import tempfile
import zipfile
import re
import ast
import time
from datetime import datetime
from collections import defaultdict
from classifyTags import classify_tags
TITLE = "WaifuDiffusion Tagger multiple images"
DESCRIPTION = """
Demo for the WaifuDiffusion tagger models
Example image by [ほし☆☆☆](https://www.pixiv.net/en/users/43565085)
Features of This Modified Version:
- Supports batch processing of multiple images
- Displays tag results in categorized groups: the generated tags will now be analyzed and categorized into corresponding groups.
"""
# Dataset v3 series of models:
SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3"
VIT_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-large-tagger-v3"
EVA02_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
# Dataset v2 series of models:
MOAT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2"
SWIN_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
CONV_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
# IdolSankaku series of models:
EVA02_LARGE_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-eva02-large-tagger-v1"
SWINV2_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-swinv2-tagger-v1"
# Files to download from the repos
MODEL_FILENAME = "model.onnx"
LABEL_FILENAME = "selected_tags.csv"
# LLAMA model
META_LLAMA_3_3B_REPO = "jncraton/Llama-3.2-3B-Instruct-ct2-int8"
META_LLAMA_3_8B_REPO = "avans06/Meta-Llama-3.2-8B-Instruct-ct2-int8_float16"
# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
kaomojis = [
"0_0",
"(o)_(o)",
"+_+",
"+_-",
"._.",
"<o>_<o>",
"<|>_<|>",
"=_=",
">_<",
"3_3",
"6_9",
">_o",
"@_@",
"^_^",
"o_o",
"u_u",
"x_x",
"|_|",
"||_||",
]
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--score-slider-step", type=float, default=0.05)
parser.add_argument("--score-general-threshold", type=float, default=0.35)
parser.add_argument("--score-character-threshold", type=float, default=0.85)
parser.add_argument("--share", action="store_true")
return parser.parse_args()
def load_labels(dataframe) -> list[str]:
name_series = dataframe["name"]
name_series = name_series.map(
lambda x: x.replace("_", " ") if x not in kaomojis else x
)
tag_names = name_series.tolist()
rating_indexes = list(np.where(dataframe["category"] == 9)[0])
general_indexes = list(np.where(dataframe["category"] == 0)[0])
character_indexes = list(np.where(dataframe["category"] == 4)[0])
return tag_names, rating_indexes, general_indexes, character_indexes
def mcut_threshold(probs):
"""
Maximum Cut Thresholding (MCut)
Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy
for Multi-label Classification. In 11th International Symposium, IDA 2012
(pp. 172-183).
"""
sorted_probs = probs[probs.argsort()[::-1]]
difs = sorted_probs[:-1] - sorted_probs[1:]
t = difs.argmax()
thresh = (sorted_probs[t] + sorted_probs[t + 1]) / 2
return thresh
class Timer:
def __init__(self):
self.start_time = time.perf_counter() # Record the start time
self.checkpoints = [("Start", self.start_time)] # Store checkpoints
def checkpoint(self, label="Checkpoint"):
"""Record a checkpoint with a given label."""
now = time.perf_counter()
self.checkpoints.append((label, now))
def report(self, is_clear_checkpoints = True):
# Determine the max label width for alignment
max_label_length = max(len(label) for label, _ in self.checkpoints)
prev_time = self.checkpoints[0][1]
for label, curr_time in self.checkpoints[1:]:
elapsed = curr_time - prev_time
print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds")
prev_time = curr_time
if is_clear_checkpoints:
self.checkpoints.clear()
self.checkpoint() # Store checkpoints
def report_all(self):
"""Print all recorded checkpoints and total execution time with aligned formatting."""
print("\n> Execution Time Report:")
# Determine the max label width for alignment
max_label_length = max(len(label) for label, _ in self.checkpoints) if len(self.checkpoints) > 0 else 0
prev_time = self.start_time
for label, curr_time in self.checkpoints[1:]:
elapsed = curr_time - prev_time
print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds")
prev_time = curr_time
total_time = self.checkpoints[-1][1] - self.start_time
print(f"{'Total Execution Time'.ljust(max_label_length)}: {total_time:.3f} seconds\n")
self.checkpoints.clear()
def restart(self):
self.start_time = time.perf_counter() # Record the start time
self.checkpoints = [("Start", self.start_time)] # Store checkpoints
class Llama3Reorganize:
def __init__(
self,
repoId: str,
device: str = None,
loadModel: bool = False,
):
"""Initializes the Llama model.
Args:
repoId: LLAMA model repo.
device: Device to use for computation (cpu, cuda, ipu, xpu, mkldnn, opengl, opencl,
ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia).
localFilesOnly: If True, avoid downloading the file and return the path to the
local cached file if it exists.
"""
self.modelPath = self.download_model(repoId)
if device is None:
import torch
self.totalVram = 0
if torch.cuda.is_available():
try:
deviceId = torch.cuda.current_device()
self.totalVram = torch.cuda.get_device_properties(deviceId).total_memory/(1024*1024*1024)
except Exception as e:
print(traceback.format_exc())
print("Error detect vram: " + str(e))
device = "cuda" if self.totalVram > (8 if "8B" in repoId else 4) else "cpu"
else:
device = "cpu"
self.device = device
self.system_prompt = "Please reorganize the following English labels describing a single image into a readable English article of no more than 300 words. If there are name labels, include them in the article. Since the target audience is not general, explicit content can be written in full without hesitation. No introduction is needed; directly reply with the English article:"
if loadModel:
self.load_model()
def download_model(self, repoId):
import warnings
import requests
allowPatterns = [
"config.json",
"generation_config.json",
"model.bin",
"pytorch_model.bin",
"pytorch_model.bin.index.json",
"pytorch_model-*.bin",
"sentencepiece.bpe.model",
"tokenizer.json",
"tokenizer_config.json",
"shared_vocabulary.txt",
"shared_vocabulary.json",
"special_tokens_map.json",
"spiece.model",
"vocab.json",
"model.safetensors",
"model-*.safetensors",
"model.safetensors.index.json",
"quantize_config.json",
"tokenizer.model",
"vocabulary.json",
"preprocessor_config.json",
"added_tokens.json"
]
kwargs = {"allow_patterns": allowPatterns,}
try:
return huggingface_hub.snapshot_download(repoId, **kwargs)
except (
huggingface_hub.utils.HfHubHTTPError,
requests.exceptions.ConnectionError,
) as exception:
warnings.warn(
"An error occured while synchronizing the model %s from the Hugging Face Hub:\n%s",
repoId,
exception,
)
warnings.warn(
"Trying to load the model directly from the local cache, if it exists."
)
kwargs["local_files_only"] = True
return huggingface_hub.snapshot_download(repoId, **kwargs)
def load_model(self):
import ctranslate2
import transformers
try:
print('\n\nLoading model: %s\n\n' % self.modelPath)
kwargsTokenizer = {"pretrained_model_name_or_path": self.modelPath}
kwargsModel = {"device": self.device, "model_path": self.modelPath, "compute_type": "auto"}
self.roleSystem = {"role": "system", "content": self.system_prompt}
self.Model = ctranslate2.Generator(**kwargsModel)
self.Tokenizer = transformers.AutoTokenizer.from_pretrained(**kwargsTokenizer)
self.terminators = [self.Tokenizer.eos_token_id, self.Tokenizer.convert_tokens_to_ids("<|eot_id|>")]
except Exception as e:
self.release_vram()
raise e
def release_vram(self):
try:
import torch
if torch.cuda.is_available():
if getattr(self, "Model", None) is not None and getattr(self.Model, "unload_model", None) is not None:
self.Model.unload_model()
if getattr(self, "Tokenizer", None) is not None:
del self.Tokenizer
if getattr(self, "Model", None) is not None:
del self.Model
import gc
gc.collect()
try:
torch.cuda.empty_cache()
except Exception as e:
print(traceback.format_exc())
print("\tcuda empty cache, error: " + str(e))
print("release vram end.")
except Exception as e:
print(traceback.format_exc())
print("Error release vram: " + str(e))
def reorganize(self, text: str, max_length: int = 400):
output = None
result = None
try:
input_ids = self.Tokenizer.apply_chat_template([self.roleSystem, {"role": "user", "content": text + "\n\nHere's the reorganized English article:"}], tokenize=False, add_generation_prompt=True)
source = self.Tokenizer.convert_ids_to_tokens(self.Tokenizer.encode(input_ids))
output = self.Model.generate_batch([source], max_length=max_length, max_batch_size=2, no_repeat_ngram_size=3, beam_size=2, sampling_temperature=0.7, sampling_topp=0.9, include_prompt_in_result=False, end_token=self.terminators)
target = output[0]
result = self.Tokenizer.decode(target.sequences_ids[0])
if len(result) > 2:
if result[0] == "\"" and result[len(result) - 1] == "\"":
result = result[1:-1]
elif result[0] == "'" and result[len(result) - 1] == "'":
result = result[1:-1]
elif result[0] == "「" and result[len(result) - 1] == "」":
result = result[1:-1]
elif result[0] == "『" and result[len(result) - 1] == "』":
result = result[1:-1]
except Exception as e:
print(traceback.format_exc())
print("Error reorganize text: " + str(e))
return result
class Predictor:
def __init__(self):
self.model_target_size = None
self.last_loaded_repo = None
def download_model(self, model_repo):
csv_path = huggingface_hub.hf_hub_download(
model_repo,
LABEL_FILENAME,
)
model_path = huggingface_hub.hf_hub_download(
model_repo,
MODEL_FILENAME,
)
return csv_path, model_path
def load_model(self, model_repo):
if model_repo == self.last_loaded_repo:
return
csv_path, model_path = self.download_model(model_repo)
tags_df = pd.read_csv(csv_path)
sep_tags = load_labels(tags_df)
self.tag_names = sep_tags[0]
self.rating_indexes = sep_tags[1]
self.general_indexes = sep_tags[2]
self.character_indexes = sep_tags[3]
model = rt.InferenceSession(model_path)
_, height, width, _ = model.get_inputs()[0].shape
self.model_target_size = height
self.last_loaded_repo = model_repo
self.model = model
def prepare_image(self, path):
image = Image.open(path)
image = image.convert("RGBA")
target_size = self.model_target_size
canvas = Image.new("RGBA", image.size, (255, 255, 255))
canvas.alpha_composite(image)
image = canvas.convert("RGB")
# Pad image to square
image_shape = image.size
max_dim = max(image_shape)
pad_left = (max_dim - image_shape[0]) // 2
pad_top = (max_dim - image_shape[1]) // 2
padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
padded_image.paste(image, (pad_left, pad_top))
# Resize
if max_dim != target_size:
padded_image = padded_image.resize(
(target_size, target_size),
Image.BICUBIC,
)
# Convert to numpy array
image_array = np.asarray(padded_image, dtype=np.float32)
# Convert PIL-native RGB to BGR
image_array = image_array[:, :, ::-1]
return np.expand_dims(image_array, axis=0)
def create_file(self, text: str, directory: str, fileName: str) -> str:
# Write the text to a file
with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file:
file.write(text)
return file.name
def predict(
self,
gallery,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
characters_merge_enabled,
llama3_reorganize_model_repo,
additional_tags_prepend,
additional_tags_append,
tag_results,
progress=gr.Progress()
):
gallery_len = len(gallery)
print(f"Predict load model: {model_repo}, gallery length: {gallery_len}")
timer = Timer() # Create a timer
progressRatio = 0.5 if llama3_reorganize_model_repo else 1
progressTotal = gallery_len + 1
current_progress = 0
self.load_model(model_repo)
current_progress += progressRatio/progressTotal;
progress(current_progress, desc="Initialize wd model finished")
timer.checkpoint(f"Initialize wd model")
# Result
txt_infos = []
output_dir = tempfile.mkdtemp()
if not os.path.exists(output_dir):
os.makedirs(output_dir)
sorted_general_strings = ""
rating = None
character_res = None
general_res = None
if llama3_reorganize_model_repo:
print(f"Llama3 reorganize load model {llama3_reorganize_model_repo}")
llama3_reorganize = Llama3Reorganize(llama3_reorganize_model_repo, loadModel=True)
current_progress += progressRatio/progressTotal;
progress(current_progress, desc="Initialize llama3 model finished")
timer.checkpoint(f"Initialize llama3 model")
timer.report()
prepend_list = [tag.strip() for tag in additional_tags_prepend.split(",") if tag.strip()]
append_list = [tag.strip() for tag in additional_tags_append.split(",") if tag.strip()]
if prepend_list and append_list:
append_list = [item for item in append_list if item not in prepend_list]
# Dictionary to track counters for each filename
name_counters = defaultdict(int)
for idx, value in enumerate(gallery):
try:
image_path = value[0]
image_name = os.path.splitext(os.path.basename(image_path))[0]
# Increment the counter for the current name
name_counters[image_name] += 1
if name_counters[image_name] > 1:
image_name = f"{image_name}_{name_counters[image_name]:02d}"
image = self.prepare_image(image_path)
input_name = self.model.get_inputs()[0].name
label_name = self.model.get_outputs()[0].name
print(f"Gallery {idx:02d}: Starting run wd model...")
preds = self.model.run([label_name], {input_name: image})[0]
labels = list(zip(self.tag_names, preds[0].astype(float)))
# First 4 labels are actually ratings: pick one with argmax
ratings_names = [labels[i] for i in self.rating_indexes]
rating = dict(ratings_names)
# Then we have general tags: pick any where prediction confidence > threshold
general_names = [labels[i] for i in self.general_indexes]
if general_mcut_enabled:
general_probs = np.array([x[1] for x in general_names])
general_thresh = mcut_threshold(general_probs)
general_res = [x for x in general_names if x[1] > general_thresh]
general_res = dict(general_res)
# Everything else is characters: pick any where prediction confidence > threshold
character_names = [labels[i] for i in self.character_indexes]
if character_mcut_enabled:
character_probs = np.array([x[1] for x in character_names])
character_thresh = mcut_threshold(character_probs)
character_thresh = max(0.15, character_thresh)
character_res = [x for x in character_names if x[1] > character_thresh]
character_res = dict(character_res)
character_list = list(character_res.keys())
sorted_general_list = sorted(
general_res.items(),
key=lambda x: x[1],
reverse=True,
)
sorted_general_list = [x[0] for x in sorted_general_list]
#Remove values from character_list that already exist in sorted_general_list
character_list = [item for item in character_list if item not in sorted_general_list]
#Remove values from sorted_general_list that already exist in prepend_list or append_list
if prepend_list:
sorted_general_list = [item for item in sorted_general_list if item not in prepend_list]
if append_list:
sorted_general_list = [item for item in sorted_general_list if item not in append_list]
sorted_general_list = prepend_list + sorted_general_list + append_list
sorted_general_strings = ", ".join((character_list if characters_merge_enabled else []) + sorted_general_list).replace("(", "\(").replace(")", "\)")
classified_tags, unclassified_tags = classify_tags(sorted_general_list)
current_progress += progressRatio/progressTotal;
progress(current_progress, desc=f"image{idx:02d}, predict finished")
timer.checkpoint(f"image{idx:02d}, predict finished")
if llama3_reorganize_model_repo:
print(f"Starting reorganize with llama3...")
reorganize_strings = llama3_reorganize.reorganize(sorted_general_strings)
reorganize_strings = re.sub(r" *Title: *", "", reorganize_strings)
reorganize_strings = re.sub(r"\n+", ",", reorganize_strings)
reorganize_strings = re.sub(r",,+", ",", reorganize_strings)
sorted_general_strings += "," + reorganize_strings
current_progress += progressRatio/progressTotal;
progress(current_progress, desc=f"image{idx:02d}, llama3 reorganize finished")
timer.checkpoint(f"image{idx:02d}, llama3 reorganize finished")
txt_file = self.create_file(sorted_general_strings, output_dir, image_name + ".txt")
txt_infos.append({"path":txt_file, "name": image_name + ".txt"})
tag_results[image_path] = { "strings": sorted_general_strings, "classified_tags": classified_tags, "rating": rating, "character_res": character_res, "general_res": general_res, "unclassified_tags": unclassified_tags }
timer.report()
except Exception as e:
print(traceback.format_exc())
print("Error predict: " + str(e))
# Result
download = []
if txt_infos is not None and len(txt_infos) > 0:
downloadZipPath = os.path.join(output_dir, "images-tagger-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip")
with zipfile.ZipFile(downloadZipPath, 'w', zipfile.ZIP_DEFLATED) as taggers_zip:
for info in txt_infos:
# Get file name from lookup
taggers_zip.write(info["path"], arcname=info["name"])
download.append(downloadZipPath)
if llama3_reorganize_model_repo:
llama3_reorganize.release_vram()
del llama3_reorganize
progress(1, desc=f"Predict completed")
timer.report_all() # Print all recorded times
print("Predict is complete.")
return download, sorted_general_strings, classified_tags, rating, character_res, general_res, unclassified_tags, tag_results
def get_selection_from_gallery(gallery: list, tag_results: dict, selected_state: gr.SelectData):
if not selected_state:
return selected_state
tag_result = { "strings": "", "classified_tags": "{}", "rating": "", "character_res": "", "general_res": "", "unclassified_tags": "{}" }
if selected_state.value["image"]["path"] in tag_results:
tag_result = tag_results[selected_state.value["image"]["path"]]
return (selected_state.value["image"]["path"], selected_state.value["caption"]), tag_result["strings"], tag_result["classified_tags"], tag_result["rating"], tag_result["character_res"], tag_result["general_res"], tag_result["unclassified_tags"]
def append_gallery(gallery: list, image: str):
if gallery is None:
gallery = []
if not image:
return gallery, None
gallery.append(image)
return gallery, None
def extend_gallery(gallery: list, images):
if gallery is None:
gallery = []
if not images:
return gallery
# Combine the new images with the existing gallery images
gallery.extend(images)
return gallery
def remove_image_from_gallery(gallery: list, selected_image: str):
if not gallery or not selected_image:
return gallery
selected_image = ast.literal_eval(selected_image) #Use ast.literal_eval to parse text into a tuple.
# Remove the selected image from the gallery
if selected_image in gallery:
gallery.remove(selected_image)
return gallery
def main():
# Custom CSS to set the height of the gr.Dropdown menu
css = """
div.progress-level div.progress-level-inner {
text-align: left !important;
width: 55.5% !important;
}
"""
args = parse_args()
predictor = Predictor()
dropdown_list = [
EVA02_LARGE_MODEL_DSV3_REPO,
SWINV2_MODEL_DSV3_REPO,
CONV_MODEL_DSV3_REPO,
VIT_MODEL_DSV3_REPO,
VIT_LARGE_MODEL_DSV3_REPO,
# ---
MOAT_MODEL_DSV2_REPO,
SWIN_MODEL_DSV2_REPO,
CONV_MODEL_DSV2_REPO,
CONV2_MODEL_DSV2_REPO,
VIT_MODEL_DSV2_REPO,
# ---
SWINV2_MODEL_IS_DSV1_REPO,
EVA02_LARGE_MODEL_IS_DSV1_REPO,
]
llama_list = [
META_LLAMA_3_3B_REPO,
META_LLAMA_3_8B_REPO,
]
with gr.Blocks(title=TITLE, css = css) as demo:
gr.Markdown(
value=f"<h1 style='text-align: center; margin-bottom: 1rem'>{TITLE}</h1>"
)
gr.Markdown(value=DESCRIPTION)
with gr.Row():
with gr.Column():
submit = gr.Button(value="Submit", variant="primary", size="lg")
with gr.Column(variant="panel"):
# Create an Image component for uploading images
image_input = gr.Image(label="Upload an Image or clicking paste from clipboard button", type="filepath", sources=["upload", "clipboard"], height=150)
with gr.Row():
upload_button = gr.UploadButton("Upload multiple images", file_types=["image"], file_count="multiple", size="sm")
remove_button = gr.Button("Remove Selected Image", size="sm")
gallery = gr.Gallery(columns=5, rows=5, show_share_button=False, interactive=True, height="500px", label="Gallery that displaying a grid of images")
model_repo = gr.Dropdown(
dropdown_list,
value=EVA02_LARGE_MODEL_DSV3_REPO,
label="Model",
)
with gr.Row():
general_thresh = gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.score_general_threshold,
label="General Tags Threshold",
scale=3,
)
general_mcut_enabled = gr.Checkbox(
value=False,
label="Use MCut threshold",
scale=1,
)
with gr.Row():
character_thresh = gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.score_character_threshold,
label="Character Tags Threshold",
scale=3,
)
character_mcut_enabled = gr.Checkbox(
value=False,
label="Use MCut threshold",
scale=1,
)
with gr.Row():
characters_merge_enabled = gr.Checkbox(
value=True,
label="Merge characters into the string output",
scale=1,
)
with gr.Row():
llama3_reorganize_model_repo = gr.Dropdown(
[None] + llama_list,
value=None,
label="Llama3 Model",
info="Use the Llama3 model to reorganize the article (Note: very slow)",
)
with gr.Row():
additional_tags_prepend = gr.Text(label="Prepend Additional tags (comma split)")
additional_tags_append = gr.Text(label="Append Additional tags (comma split)")
with gr.Row():
clear = gr.ClearButton(
components=[
gallery,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
characters_merge_enabled,
llama3_reorganize_model_repo,
additional_tags_prepend,
additional_tags_append,
],
variant="secondary",
size="lg",
)
with gr.Column(variant="panel"):
download_file = gr.File(label="Output (Download)")
sorted_general_strings = gr.Textbox(label="Output (string)", show_label=True, show_copy_button=True)
categorized = gr.JSON(label="Categorized (tags)")
rating = gr.Label(label="Rating")
character_res = gr.Label(label="Output (characters)")
general_res = gr.Label(label="Output (tags)")
unclassified = gr.JSON(label="Unclassified (tags)")
clear.add(
[
download_file,
sorted_general_strings,
categorized,
rating,
character_res,
general_res,
unclassified,
]
)
tag_results = gr.State({})
# Define the event listener to add the uploaded image to the gallery
image_input.change(append_gallery, inputs=[gallery, image_input], outputs=[gallery, image_input])
# When the upload button is clicked, add the new images to the gallery
upload_button.upload(extend_gallery, inputs=[gallery, upload_button], outputs=gallery)
# Event to update the selected image when an image is clicked in the gallery
selected_image = gr.Textbox(label="Selected Image", visible=False)
gallery.select(get_selection_from_gallery, inputs=[gallery, tag_results], outputs=[selected_image, sorted_general_strings, categorized, rating, character_res, general_res, unclassified])
# Event to remove a selected image from the gallery
remove_button.click(remove_image_from_gallery, inputs=[gallery, selected_image], outputs=gallery)
submit.click(
predictor.predict,
inputs=[
gallery,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
characters_merge_enabled,
llama3_reorganize_model_repo,
additional_tags_prepend,
additional_tags_append,
tag_results,
],
outputs=[download_file, sorted_general_strings, categorized, rating, character_res, general_res, unclassified, tag_results,],
)
gr.Examples(
[["power.jpg", SWINV2_MODEL_DSV3_REPO, 0.35, False, 0.85, False]],
inputs=[
image_input,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
],
)
demo.queue(max_size=2)
demo.launch(inbrowser=True)
if __name__ == "__main__":
main()
|