Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
import io, base64
|
4 |
-
from PIL import Image
|
5 |
import numpy as np
|
6 |
import tensorflow as tf
|
7 |
import mediapy
|
8 |
import os
|
9 |
import sys
|
10 |
-
from huggingface_hub import snapshot_download
|
11 |
-
|
12 |
import streamlit as st
|
13 |
import firebase_admin
|
14 |
-
from firebase_admin import credentials
|
15 |
-
from firebase_admin import firestore
|
16 |
import datetime
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
#
|
20 |
@st.experimental_singleton
|
21 |
def get_db_firestore():
|
22 |
cred = credentials.Certificate('test.json')
|
@@ -24,16 +24,23 @@ def get_db_firestore():
|
|
24 |
db = firestore.client()
|
25 |
return db
|
26 |
|
27 |
-
#start
|
28 |
db = get_db_firestore()
|
|
|
|
|
29 |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def transcribe(audio):
|
32 |
text = asr(audio)["text"]
|
33 |
return text
|
34 |
|
35 |
-
classifier = pipeline("text-classification")
|
36 |
-
|
37 |
def speech_to_text(speech):
|
38 |
text = asr(speech)["text"]
|
39 |
return text
|
@@ -67,50 +74,34 @@ def selectall(text):
|
|
67 |
r=(f'{doc.id} => {doc.to_dict()}')
|
68 |
doclist += r
|
69 |
return doclist
|
70 |
-
|
71 |
-
#demo = gr.Blocks()
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
#demo.launch(share=True)
|
76 |
-
|
77 |
-
|
78 |
-
# 1. GPT-J: Story Generation Pipeline
|
79 |
-
story_gen = pipeline("text-generation", "pranavpsv/gpt2-genre-story-generator")
|
80 |
-
|
81 |
-
# 2. LatentDiffusion: Latent Diffusion Interface
|
82 |
image_gen = gr.Interface.load("spaces/multimodalart/latentdiffusion")
|
83 |
|
84 |
-
#
|
85 |
os.system("git clone https://github.com/google-research/frame-interpolation")
|
86 |
sys.path.append("frame-interpolation")
|
87 |
-
from eval import interpolator, util
|
88 |
-
|
89 |
ffmpeg_path = util.get_ffmpeg_path()
|
90 |
mediapy.set_ffmpeg(ffmpeg_path)
|
91 |
-
|
92 |
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
|
93 |
interpolator = interpolator.Interpolator(model, None)
|
94 |
|
|
|
95 |
def generate_story(choice, input_text):
|
96 |
query = "<BOS> <{0}> {1}".format(choice, input_text)
|
97 |
-
|
98 |
-
print(query)
|
99 |
generated_text = story_gen(query)
|
100 |
generated_text = generated_text[0]['generated_text']
|
101 |
generated_text = generated_text.split('> ')[2]
|
102 |
-
|
103 |
return generated_text
|
104 |
|
105 |
-
|
|
|
106 |
steps=50
|
107 |
width=256
|
108 |
height=256
|
109 |
num_images=4
|
110 |
diversity=6
|
111 |
-
image_bytes = image_gen(
|
112 |
-
|
113 |
-
# Algo from spaces/Gradio-Blocks/latent_gpt2_story/blob/main/app.py
|
114 |
generated_images = []
|
115 |
for image in image_bytes[1]:
|
116 |
image_str = image[0]
|
@@ -118,56 +109,44 @@ def generate_images(generated_text):
|
|
118 |
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
|
119 |
img = Image.open(io.BytesIO(decoded_bytes))
|
120 |
generated_images.append(img)
|
121 |
-
|
122 |
return generated_images
|
123 |
|
|
|
124 |
def generate_interpolation(gallery):
|
125 |
times_to_interpolate = 4
|
126 |
-
|
127 |
generated_images = []
|
128 |
for image_str in gallery:
|
129 |
image_str = image_str.replace("data:image/png;base64,","")
|
130 |
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
|
131 |
img = Image.open(io.BytesIO(decoded_bytes))
|
132 |
generated_images.append(img)
|
133 |
-
|
134 |
generated_images[0].save('frame_0.png')
|
135 |
generated_images[1].save('frame_1.png')
|
136 |
generated_images[2].save('frame_2.png')
|
137 |
generated_images[3].save('frame_3.png')
|
138 |
-
|
139 |
input_frames = ["frame_0.png", "frame_1.png", "frame_2.png", "frame_3.png"]
|
140 |
-
|
141 |
frames = list(util.interpolate_recursively_from_files(input_frames, times_to_interpolate, interpolator))
|
142 |
-
|
143 |
mediapy.write_video("out.mp4", frames, fps=15)
|
144 |
-
|
145 |
return "out.mp4"
|
146 |
-
|
147 |
-
|
148 |
|
149 |
demo = gr.Blocks()
|
150 |
|
151 |
with demo:
|
152 |
-
#audio_file = gr.Audio(type="filepath")
|
153 |
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
|
154 |
text = gr.Textbox()
|
155 |
label = gr.Label()
|
156 |
saved = gr.Textbox()
|
157 |
-
savedAll = gr.Textbox()
|
158 |
-
|
159 |
b1 = gr.Button("Recognize Speech")
|
160 |
b2 = gr.Button("Classify Sentiment")
|
161 |
b3 = gr.Button("Save Speech to Text")
|
162 |
b4 = gr.Button("Retrieve All")
|
163 |
-
|
164 |
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
165 |
b2.click(text_to_sentiment, inputs=text, outputs=label)
|
166 |
b3.click(upsert, inputs=text, outputs=saved)
|
167 |
b4.click(selectall, inputs=text, outputs=savedAll)
|
168 |
|
169 |
with gr.Row():
|
170 |
-
|
171 |
# Left column (inputs)
|
172 |
with gr.Column():
|
173 |
input_story_type = gr.Radio(choices=['superhero', 'action', 'drama', 'horror', 'thriller', 'sci_fi'], value='sci_fi', label="Genre")
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import io, base64
|
|
|
3 |
import numpy as np
|
4 |
import tensorflow as tf
|
5 |
import mediapy
|
6 |
import os
|
7 |
import sys
|
|
|
|
|
8 |
import streamlit as st
|
9 |
import firebase_admin
|
|
|
|
|
10 |
import datetime
|
11 |
|
12 |
+
from transformers import pipeline
|
13 |
+
from PIL import Image
|
14 |
+
from huggingface_hub import snapshot_download
|
15 |
+
from firebase_admin import credentials
|
16 |
+
from firebase_admin import firestore
|
17 |
+
from eval import interpolator, util
|
18 |
|
19 |
+
# firestore singleton is a cached multiuser instance to persist shared crowdsource memory
|
20 |
@st.experimental_singleton
|
21 |
def get_db_firestore():
|
22 |
cred = credentials.Certificate('test.json')
|
|
|
24 |
db = firestore.client()
|
25 |
return db
|
26 |
|
27 |
+
#start firestore singleton
|
28 |
db = get_db_firestore()
|
29 |
+
|
30 |
+
# create ASR ML pipeline
|
31 |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
32 |
|
33 |
+
# create Text Classification pipeline
|
34 |
+
classifier = pipeline("text-classification")
|
35 |
+
|
36 |
+
# create text generator pipeline
|
37 |
+
story_gen = pipeline("text-generation", "pranavpsv/gpt2-genre-story-generator")
|
38 |
+
|
39 |
+
# transcribe function
|
40 |
def transcribe(audio):
|
41 |
text = asr(audio)["text"]
|
42 |
return text
|
43 |
|
|
|
|
|
44 |
def speech_to_text(speech):
|
45 |
text = asr(speech)["text"]
|
46 |
return text
|
|
|
74 |
r=(f'{doc.id} => {doc.to_dict()}')
|
75 |
doclist += r
|
76 |
return doclist
|
|
|
|
|
77 |
|
78 |
+
# image generator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
image_gen = gr.Interface.load("spaces/multimodalart/latentdiffusion")
|
80 |
|
81 |
+
# video generator
|
82 |
os.system("git clone https://github.com/google-research/frame-interpolation")
|
83 |
sys.path.append("frame-interpolation")
|
|
|
|
|
84 |
ffmpeg_path = util.get_ffmpeg_path()
|
85 |
mediapy.set_ffmpeg(ffmpeg_path)
|
|
|
86 |
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
|
87 |
interpolator = interpolator.Interpolator(model, None)
|
88 |
|
89 |
+
# story gen
|
90 |
def generate_story(choice, input_text):
|
91 |
query = "<BOS> <{0}> {1}".format(choice, input_text)
|
|
|
|
|
92 |
generated_text = story_gen(query)
|
93 |
generated_text = generated_text[0]['generated_text']
|
94 |
generated_text = generated_text.split('> ')[2]
|
|
|
95 |
return generated_text
|
96 |
|
97 |
+
# images gen
|
98 |
+
def generate_images(text):
|
99 |
steps=50
|
100 |
width=256
|
101 |
height=256
|
102 |
num_images=4
|
103 |
diversity=6
|
104 |
+
image_bytes = image_gen(text, steps, width, height, num_images, diversity)
|
|
|
|
|
105 |
generated_images = []
|
106 |
for image in image_bytes[1]:
|
107 |
image_str = image[0]
|
|
|
109 |
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
|
110 |
img = Image.open(io.BytesIO(decoded_bytes))
|
111 |
generated_images.append(img)
|
|
|
112 |
return generated_images
|
113 |
|
114 |
+
# reductionism - interpolate 4 images - todo - unhardcode the pattern
|
115 |
def generate_interpolation(gallery):
|
116 |
times_to_interpolate = 4
|
|
|
117 |
generated_images = []
|
118 |
for image_str in gallery:
|
119 |
image_str = image_str.replace("data:image/png;base64,","")
|
120 |
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
|
121 |
img = Image.open(io.BytesIO(decoded_bytes))
|
122 |
generated_images.append(img)
|
|
|
123 |
generated_images[0].save('frame_0.png')
|
124 |
generated_images[1].save('frame_1.png')
|
125 |
generated_images[2].save('frame_2.png')
|
126 |
generated_images[3].save('frame_3.png')
|
|
|
127 |
input_frames = ["frame_0.png", "frame_1.png", "frame_2.png", "frame_3.png"]
|
|
|
128 |
frames = list(util.interpolate_recursively_from_files(input_frames, times_to_interpolate, interpolator))
|
|
|
129 |
mediapy.write_video("out.mp4", frames, fps=15)
|
|
|
130 |
return "out.mp4"
|
|
|
|
|
131 |
|
132 |
demo = gr.Blocks()
|
133 |
|
134 |
with demo:
|
|
|
135 |
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
|
136 |
text = gr.Textbox()
|
137 |
label = gr.Label()
|
138 |
saved = gr.Textbox()
|
139 |
+
savedAll = gr.Textbox()
|
|
|
140 |
b1 = gr.Button("Recognize Speech")
|
141 |
b2 = gr.Button("Classify Sentiment")
|
142 |
b3 = gr.Button("Save Speech to Text")
|
143 |
b4 = gr.Button("Retrieve All")
|
|
|
144 |
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
145 |
b2.click(text_to_sentiment, inputs=text, outputs=label)
|
146 |
b3.click(upsert, inputs=text, outputs=saved)
|
147 |
b4.click(selectall, inputs=text, outputs=savedAll)
|
148 |
|
149 |
with gr.Row():
|
|
|
150 |
# Left column (inputs)
|
151 |
with gr.Column():
|
152 |
input_story_type = gr.Radio(choices=['superhero', 'action', 'drama', 'horror', 'thriller', 'sci_fi'], value='sci_fi', label="Genre")
|